HALF-SPACE THEOREMS FOR TRANSLATING SOLITONS
OF THE ~-MEAN CURVATURE FLOW

HILARIO ALENCAR, G. PACELLI BESSA AND GREGORIO SILVA NETO

ABSTRACT. In this paper, we establish nonexistence results for com-
plete translating solitons of the r-mean curvature flow under suitable
growth conditions on the (r —1)-mean curvature and on the norm of the
second fundamental form. We first show that such solitons cannot be
entirely contained in the complement of a right rotational cone whose
axis of symmetry is aligned with the translation direction. We then
relax the growth condition on the (r — 1)-mean curvature and prove
that properly immersed translating solitons cannot be confined to cer-
tain half-spaces opposite to the translation direction. We conclude the
paper by showing that complete, properly immersed translating solitons
satisfying appropriate growth conditions on the (r — 1)-mean curvature
cannot lie completely within the intersection of two transversal vertical

half-spaces.

1. INTRODUCTION

Let Xo : " — R™"! be an isometric immersion of a n-dimensional Rie-

mannian manifold X", with the second fundamental form
II(X,Y) = (A(X),Y)N,

where A : TYX"™ — T3 is its shape operator and N is a unit normal vector
field. Letting ki,...,k, be the principal curvatures of the immersion, we

define the r-mean curvatures as

g =1,

(1.1) or = Z kiy -k, for 1<r<n,
or =0, for r >n,
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where (i1,...,4,) € {1,...,n}". These functions appear naturally in the

characteristic polynomial of A, since

det(A —tI) = 0, — op_1t + oot — op_st® + - 4 (=1)™"

n . .
=> (Do, 1.
j=0

A family of isometric immersions & : " x [0,T) — R"*! is a solution of

(1.2)

the r-mean curvature flow if it satisfies the initial value problem
ox
a—(w,t) =op(k1(z,t),... kpn(z,t)) - N(z,1),
(1.3) ¢

X(z,0) = Xo(x).
Here, ki(x,t),...,kp(z,t) are the principal curvatures of the immersions
X :== X(-,t) and N(-,t) are their normal vector fields. When r = 1, the
r-mean curvature flow is called the mean curvature flow.

The r-mean curvature flow has been widely studied in recent decades, as
we can see, for instance, in [5], [7], [8], [11], [15], [18], [20], [21], [26], [27],
[32], [33], and [35].

Among the most significant solutions of (1.3) are the self-similar ones,
in which the initial immersion X evolves under the flow only through an
isometry or a homothety in R"*!. Translating solitons, also called transla-
tors, form the subclass where the evolution consists solely of a translation
in R**1! ie.,

X(z,t) = Xo(z) + tV,
where V' € R"! is a unit vector, called the velocity vector of the translator.

It can be easily proven that if ¥* C R"*! is a translating soliton of the
r-mean curvature flow, then
(1.4) or(x) = (N(x),V).
A natural tool to study the r-mean curvature is the r-th Newton trans-
formation P, : TYX" — TX"™ 0 <r <n —1, defined recursively by
Py=1,
(1.5)
P =o0.1—-AP._1, r>1,

where I : T»™ — T'%"™ is the identity operator. In the context of Differential
Geometry, it first appeared in the work of Reilly [30] in the expressions of the

variational integral formulas for functions f(oy,...,0,) of the elementary
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symmetric functions o;’s. Since then, the Newton transformations have
been widely used as a tool in the study of the r-mean curvature, as we can
see, for example, in [1], [2], [3], [4], [6], [10], [13], [16], [23], [24], [31], and
[34]. Since we are assuming that 3™ has a global choice of N we have that

P, is globally defined.

Remark 1.1. Solving the recurrence, we can also write P, as the polynomial

(1.6) P.=o0,0 -0, 1A+ 0o, A% — -+ (=1)"A" = Z(—l)jar_jAj.
=0

Notice that the Newton transformation P, is a “degree r version” of the

characteristic polynomial (1.2) applied to A.

In this paper, we establish non-existence results for translating solitons
of the r-mean curvature flow in certain regions of R"*!. We first prove a
non-existence theorem for translating solitons of the r-mean curvature flow

in the complement of the open cone

X
Cva = {X € R"tY <||X||’V> > a, a€ (0,1)}.

Theorem 1.1. There are no complete, n-dimensional, translating solitons
of the r-mean curvature flow X" C R* ™! with velocity V with P,_1 positive

semidefinite, contained in the complement of the open cone Cy,q,

X
(Cvﬂ)c = {X € Rn+1, <H)(H,V> < a, a¢c (07 1)},
satisfying one of the following conditions:
(i) X™ is properly immersed and

or—1(x) r(1—a)

1.7 lim su ,
.7 OS5y a(n— 7+ 1)

where §(x) denotes the extrinsic distance to a fized point of R"1;

(ii) o,—1 is bounded and

(1.8) lim sup [A@)]

p(2) 00 P(2)10g(p(x)) log(log(p(x))) =

where p(z) denotes the intrinsic distance to a fized point of R+,

Ifr =1,then 0,1 = 09 = 1 and P, = Py = I (that is positive definite).

Moreover, (1.7) is automatically satisfied. Therefore, we immediately obtain:
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Corollary 1.1. There are no complete, properly immersed, n-dimensional,
translating solitons of the mean curvature flow X" C R™1 . with velocity V,
contained in the complement of the open cone Cyq,

(Cva) = {X e R <H§H, V> <a, a € (0, 1)} )
Remark 1.2. Clearly, condition (ii) in Theorem 1.1 can be used to replace

the hypothesis of being properly immersed in Corollary 1.1 by the control

of the second fundamental form given by (1.8), since, for r =1, 0,,—1 = 1.

Remark 1.3. Notice that the conditions given in Equations (1.7) and (1.8)
are equivalent to the existence of positive constants C, D > 0 such that
r(1—a)

mw(l’) +C]

or—1(x) <

and

[A(z)]| < Dp(x)log(p(x)) log(log(p())),
for 6(x) > 1 and p(x) > 1 respectively.
If we restrict the region (Cy,q)¢ to a halfspace of the form
Hw = {X e R" (X, W) <0, (V,W) >0, [W[ =1},

that is always contained in (Cy,, )¢ for any a € (0, 1) such that a > (V, W), we
can improve the hypothesis (1.7) in the case that X" is properly immersed.

This is the content of the next

Theorem 1.2. There is no complete, n-dimensional, properly immersed,
translating soliton of the r-mean curvature flow X" C R™ . with velocity

V', P,_1 positive semidefinite, contained in the closed half-space
HW = {X € Rn—H; <X7 W> < Oa <V7 W) > 07 ||W|| = 1}7

and such that

imsu UT_I(@
(1.9) S S P Tog(3(2)) log(log(6(2))

where () denotes the extrinsic distance to a fived point of R™T1.

< 00,

Remark 1.4. Notice that the condition given in Equation (1.9) is equivalent

to the existence of a positive constant D > 0 such that

or—1(z) < D[5(x)]*log(8(x)) log(log(d(x)))
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for §(x) > 1. This growth condition for o,_i(x) is clearly better than that
given by Equation (1.7) in Theorem 1.1.

If r =1, then 0,1 = 09 = 1 and (1.9) is automatically satisfied. Thus,

we obtain the following

Corollary 1.2. There are no complete, properly immersed, n-dimensional,
translating solitons of the mean curvature flow X" C R" 1, with velocity V,

in a closed half-space
Hw = {X e R" (X, W) <0, (V,IW) >0, |[W|=1}.

Remark 1.5. Corollaries 1.2 and 1.1 are stated in [25] without the hypoth-
esis that X" is properly immersed. Unfortunately, there was an error in
their proof. In order to apply the Omori—Yau maximum principle, the au-
thors claimed that translating solitons of the mean curvature flow have Ricci
curvature bounded below by —1/4 (Equation (3.1), p. 5), but, in their ar-
gument, the sign in the Gauss equation is reversed, leading to an incorrect

estimate.

Example 1.1. For r = 1, the Grim Reaper cylinder, the bowl soliton, and
the translating catenoids are examples of properly immersed translating
solitons that are not contained in Hy or (Cy,q)° for V = E, ;1. Moreover,
this property persists under any translation in the direction of V, i.e., for
X" +tV, t € R. For the Grim Reaper cylinder, this follows from the fact
that the curve y = —log(cos ) has two vertical asymptotes, implying that
its graph intersects every rotational cone with vertex at the origin and axis
E,,+1. By the same reason, no vertical translation in the F,i-direction can
place it entirely within any Hyy. On the other hand, one can always find
a suitable translation such that these hypersurfaces lie in the complements
R™\ Hy and Cy, (see Figure 1). The same phenomenon occurs for the
bowl soliton and the translating catenoids, whose asymptotic expansion as
R(x) approaches infinity is
2

2(]“:;(?1) ~ log(R(x)) + O(R(x)")),

where R(z) denotes the Euclidean distance from z € R™ to the origin (re-

member these hypersurfaces are radial graphs over a subset of R™).
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FiGURE 1. The Grim Reaper cylinder and the sets Hy and
(CV,a)C .

Example 1.2. If r > 1, the r-bowl soliton and the r-translating catenoids
classified by R. de Lima and G. Pipoli in [28] share the same properties as
their counterparts for r = 1. Indeed, they are properly embedded (despite,
for r > 1, the r-translating catenoids are not complete), and neither they
nor any of their translations in the direction of V' = FE, ;1 are contained in
any Hy or (Cy,q)¢. Moreover, one can always find a suitable translation such
that these hypersurfaces lie in the complements R\ Hy, and Cv,q. In fact,
de Lima and Pipoli proved that the angle function © = (N, E,,11) converges
to 1 as the Euclidean distance R(z) from z € R™ to the origin tends to
infinity. It follows that these hypersurfaces intersect every rotational cone

with fixed angle, and thus cannot be contained in any (Cyq)¢ for V.= Ep, ;.
In order to introduce our next result, we need the following

Definition 1.1. Let ¥ C R"*! be a translating soliton of the r-mean
curvature flow with velocity vector V', this is, o, = (N, V), where N is the

normal vector field of ™.

(i) Given B,W € R""! we say that a halfspace
H=Hpw) ={X e R (X - B,W) >0},

is vertical if W 1L V;
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(ii) Two halfspaces
Hi=Hpwy) = {X eR" (X - B;,W;) >0}, i=12,
are transversal if Wi and Ws are linearly independent.

We conclude this paper proving a nonexistence result for translating soli-
tons of the r-mean curvature flow in intersection of two vertical half-spaces.
This result is a generalization of the “bi-halfspace” Theorem 1.1 of [17] by
Chini and Mgller.

Theorem 1.3. There is no complete, properly immersed, n-dimensional,
translating soliton of the r-mean curvature flow X" C R™, contained in
the intersection of two transversal vertical half-spaces, such that P._1 > €l
for some ¢ > 0, and

imsu o 10)
(1.10) st 2 [ Tog(8()) log{loB(0(2))

where § : X" — Ry is the extrinsic distance to a fized point.

< 00,

Remark 1.6. We say that P,_1 > I, for some ¢ > 0, if (P,_1(v),v) > ¢||v]|?,
for any v € TX™.

In Theorem 1.3, if we take r = 1, then 09 = 1 and Py = I. Moreover,

(1.10) is automatically satisfied. Therefore, we immediately obtain:

Corollary 1.3 (Chini and Mgller [17]). There does not exist any complete,
properly immersed, n-dimensional translating soliton of the mean curvature
flow, ¥ C R™! that is contained in the intersection of two transversal

vertical half-spaces.

Remark 1.7. Clearly, the bowl soliton, the translating catenoids, and their
counterparts for r > 1, classified in [28], intersect every vertical hyperplane
and therefore cannot be contained in the intersection of two transversal
vertical half-spaces. On the other hand, when r = 1, the Grim Reaper
cylinder lies between two parallel hyperplanes; however, once one of these
hyperplanes is fixed, the cylinder intersects every other vertical hyperplane
transversal to it. This shows that the Grim Reaper cylinder is not contained

in the intersection of two transversal vertical half-spaces either.



8 HILARIO ALENCAR, G. PACELLI BESSA AND GREGORIO SILVA NETO
2. OMORI-YAU TYPE MAXIMUM PRINCIPLES

The celebrated Omori-Yau maximum principle can be considered in a
variety of differential operators acting on smooth functions of a Riemannian
manifold X" other than the Laplacian. In the following, we use the maximum
principle found in [12] which we include a complete proof here (with more
details) for the sake of completeness.

Let X" be a n-dimensional Riemannian manifold, f : ¥ — R be a class
C? function, and ¢ : TY"™ — TX" be a linear symmetric tensor. Define the

second-order differential operator
Lyf = trace(¢ o hess f) — (Z,Vf),

where Z is a vector field defined on " with supyw | Z|| < co. Here, hess f :
TY" — TX" is the linear operator hess f(W) = ViV f, associated to the
hessian quadratic form Hess f, i.e., Hess f(W7, Wa) = (hess f(W71), Wa).

Lemma 2.1 (G. P. Bessa and L. Pessoa, [12]). Let ¥" be an n-dimensional
complete Riemannian manifold, ¢ : TX™ — TX" be a symmetric and positive
semidefinite linear tensor, and Z be a bounded vector field on X". If there
exists a positive function v € C2(X") and G : [0,00) — [0,00) such that

(i) G(0) >0, G'(t) 2 0, G(t)""/* & L}([0, 00));

(ii) y(z) — oo when x — oo;

g
(iii) 3A > 0 such that | V7| < AV G(7) (/

set, for some a > 1 ;

a0 + 1) off a compact

(iv) 3B > 0 such that trace(¢ o hessvy) < By/G(7) (/AY dGS( ) + 1)
a S

off a compact set, for some a > 1;

then, for every function u € C?(X") satisfying

u(z)

i = or =In ti o0
(2.1) xl;rglo (@) =0, for ¢(t)=1 (/0 m—i—l), t €10,00),

there exists a sequence of points {xy}r C X" such that

1
and  Lyu(zy) < —.

(22) [Vu(en)] < 7 .

k
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Moreover, if instead of (2.1) we assume that u* = supym u < 00, then

lim u(xg) = u*.
k—o0

Proof. Let

fr(@) = u(z) — erp(v(2)),
for each positive integer k, where €, > 0 is a sequence satisfying e, — 0,
when k — co. Since, for a fixed zg € X", the sequence { fi(zo) }«, defined by
fr(zo) = u(zg) — epp(v(xo)) is bounded, adding a positive constant to the
function w, if necessary, we may assume that fi(z9) > 0 for every k& > 0.

Notice that, by (2.1),
i _E®@) . u(z)

M) e ehE) T

which implies that fi is non-positive out of a compact set 2, C X" contain-

ing xg. Thus, fi achieves its maximum at a point xj € {0 for each k > 1.

Now, notice that
-1

(2.3) o' (t) = [\/G(t) (/0 29(8) + 1) >0
and
" ___ G'(t) b ds

©"(t) = _2\/@< ; m+1)+1 X

(2.4) - . L
X _\/G(t) < i \/% - 1) < 0.
Since
Vi = Vu—er' (7)Vy

and

Hess fi(W, W) = Hess u(W, W)—ej, [¢'(7) Hess y(W, W) + ¢" (7)(W, Vy)?] ,
we have, at zy, that
(2.5) Vu(zy) = exe (v(zx)) V7 (21)
and
Hess u(ay)(W, W) < e/ (v(wy)) Hess () (W, W)
(2.6) +en” (7(@p)) (W, Vy(zy))?
< e’ (7(zk)) Hess () (W, W).
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Now, Equation (2.5) and hypothesis (iii) imply

1
IVu(@o)ll = ex' (@) Vy ()| < erd <

foreg < ﬁ On the other hand, letting {ey, ..., e,} be an orthonormal frame
formed with eigenvectors of ¢ : TX"™ — T3", with nonnegative eigenvalues

Al,y- .., A\p, wWe have, using (2.3) and hypothesis (iii) and (iv),

Lyu(wy) Z (hess u(xr)(ei), dlei)) — (Z(xr), Vu(xr))

n

Z (hessu(xg)(e;), ei) — (Z(xr), Vu(zy))

Z ; Hessu(xy)(es, €;) — (Z(xy), Vu(xy))
—1

< ey’ (v(k)) Z Ai Hessy(z ) (ei i)
=1
— ex (V(@R))(Z (21), VY (1))
= ery (7(zx)) trace(¢ o hess ) (zy)

— e (v(zx) (2 (zr), V(1))

1
<a (B aswlzl) < 1
0 k
if we take
1

kmax{A, B+ Asups. || Z||}

If = u* = supyn u(x) < oo, then, given an arbitrary integer m > 0, let

e <

Ym € X" such that

( )> 1
u u —_
Ym om’

This gives
Je(or) = ulzr) — ery(zr) > fr(ym)

= uw(Ym) — €k (Ym)

S (ym)
Ut —— —¢ ,
m EY\Ym

which implies
N 1
u(ar) > u” = o — ey (Ym) + ewy(@x)
1

>uf— — — :
ut = o — ey (ym)
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Now, choosing k, such that e, v(ym) < ﬁ, we obtain that
1

> — —.
u(zg, ) > u ~

Thus, by replacing xj, by x,, if necessary, we can conclude that

lim wu(zg) = u*.
k—ro0

O

Remark 2.1. The typical examples of functions G satisfying condition (i) of

Lemma 2.1 are given by
N . 2

(2.7) ait)y=2"] (1og(9>(t)> . t>1,
j=1

where log") (t) denotes the j-th iterate of logt.

In the following, we apply Lemma 2.1 to the context of isometric im-
mersions. Let X : ¥” — R be an isometric immersion and P, the r-th
Newton transformation defined by (1.5), p.2. We introduce the functional
operator

L,_1f =trace(P,_j ohess f), f € C*(Z"™).
This operator is important in the study of o, as a generalization of the
Laplacian, see, for example [1], [2], [3], [4], [6], [10], [13], [16], [23], [24], [31],
and [34].
Applying Lemma 2.1 to the operator L,_1, we obtain

Theorem 2.1. Let X" be a complete hypersurface of R™! and A : TX™ —
TY" be its shape operator. Assume that the (r—1)-th Newton transformation

P,_1 is positive semidefinite. If one of the following conditions holds:

(i) or—1 is bounded and

im su HA(:U) ”
(2.8) L(I)_)Og p(x)log(p(z)) log(log(p(x)))

where p : X" — R4 is the intrinsic distance on X" to a fixed point;

9

(ii) or X™ is properly immersed,

S |or—1(2)| 0

(2.9) Ll(rggiog [6(2)]2log(d(x)) log(log(d(x))) =%
and

(2.10) lim sup o2 <o

5(z)—o0 () log(d(z)) log(log(d(x)))
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where § : X" — R is the extrinsic distance of R™*! to a fized point,

restricted to 3",

then, for any class C* function f : ¥ — R, bounded from above, there exists

a sequence of points {x}r C X" such that

lim f(zx) = sup f,
k—o00

uy
(2.11) IVl < 7.
Lr—lf(xk) < %

Proof. To prove the first part, under the hypothesis (i), let us follow Example
1.13 of [29]. Let v(z) = p(z)? = [dists(x,po)]?, where dists(x,pg) is the
intrinsic distance of X" to a point py € X™. Then ~ is smooth in X"\ ({po} U
cut(pp)), where cut(pg) denotes the cut locus of pg. Since, for the points at
the cut locus, we can apply the Calabi’s trick, we will work only with the
points where v is smooth.

If ||A(2)]|?> < CGo(p(z)), for some smooth function Gy : [0, +00) — R,
even at the origin, then, by the Gauss equation, the sectional curvatures Ky
of X™ satisfies

Kx > 2| A|> > —2CGo(p).
This implies, following the proof of Example 1.13 of [29] step-by step, that
Hess (Y, Y) < By"?Go(+/*) /2| Y |?
for some B > 0 and p(z) sufficiently large. If A,..., A\, are the eigenvalues
of P._1 with eigenvetors eq,...,e,, we have
L,_17y = trace(P,_1 o hess~)

= (Pr_1(hessy(e;)), ;)

j=1

= Z(hess v(ej), Pr-1(ej))
j=1

(2.12) n
= Z Aj(hessy(ej), (e5))
j=1
— Z Aj Hess ’Y(€j7 ej)
j=1

< Btrace Pr_1)y"2Go(y/*)V2.
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Now, taking G(t) = (tlogt)? and v = p?, in order to apply Lemma 2.1,

observe that

P(y) = \/Gm( ' %H)

= vlog(y)[log(log (7)) — log(log(a)) + 1]
(2.13) = 2p” log p[log(log(2p) — log(log(a)) + 1]
= 2p%log p[log(log(p) + log 2 — log(log(a)) + 1]
= 2p*log plog(log p),
for a = e%¢. Clearly |[Vy| = 2p < P(y) for p sufficiently large. On the
other hand, the condition (iv) of Lemma 2.1 holds if we assume that o,_;

is bounded and take
(2.14) Go(t) = (tlogtlog(logt))?.

Indeed, since trace(P,_1) = (n —r + 1)o,—1 (see Lemma 2.1, p.279 of [9]),
Equation (2.12) gives

Ly—17y < Bio,—1pGo(p)'/* < Bap? log plog(log p).

In order to prove the second part, i.e., under the hypothesis (ii), we will
follow the ideas of Example 1.14 of [29]. Indeed, assume that X" is properly
immersed and let y(x) = [6(z)]? = || X (z) — X(po)||*>. By using (2.13) with
J in the place of p, we have ||Vy|| < 26 < P(v) for large values of 6. On the

other hand,
Hess (Y, Z) = Hess 6°(Y, Z) + (A(X), Y)(N, V§?)
219 = 2(X,Y) + (A(X),Y)(N, V62,
where V and Hess denote the gradient and the hessian of R"*!, respectively.
This implies
L1y = 2(trace P,_1) + 2(trace(A o P._1))(N,8V4),
(2.16) =2(n—7r+1)o,_1 + 2ro,.(N,5V0),

where, in the last equality, we used that
(2.17)  trace(Pr—1) =(n—7+1)o,—; and trace(Ao P._1) =ro,,
(see Lemma 2.1, p.279 of [9]). If

lor—1] < Bl’Yl/QGO(’Yl/Z)l/2 and o] < BzG0(71/2)1/2
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for large 0(z), and for Go(t) given by (2.14), then
Ly17] < 200 = 1+ Dlopa]| + 2oy 72
<2(n-—-r+ 1)3171/2G0(*yl/2)1/2 + 2743271/2(;0(71/2)1/2
—: Bay2Go(71/2)1/2
< B4P(v).
The result then follows by applying Lemma 2.1 for G(t) = (tlogt)?. O

Remark 2.2. Clearly, Theorem 2.1 holds replacing, G(t) = (tlogt)? by those

given in Equation (2.7) of Remark 2.1. Our choice was aesthetic.

3. PROOF OF THEOREM 1.1
Proof of Theorem 1.1. Let us denote the extrinsic distance to the origin by
So(z) = || X (2)|. From [6g(x)]? = (X (), X (z)) we have

T
XTI,
1]

On the other hand, by (2.16) and by the definition of L,_1,

(3.1) 6oV = X" and ||V =

(3.2) %LH(sg — (n—r—1)oy_1 + 10, (X, N)
and

1
(3.3) iLT_lég = 09 L00 + (Pr—_1(Véo), Vo).

Combining Equations (3.1), (3.2), and (3.3) gives

1

(34) L,_160 = i[(n —r+ 1)1 +ro(X,N)] - g<
0

P (XT),XT).
do

Suppose by contradiction that a translating soliton X" C R"t! satisfying
the hypotheses of Theorem 1.1 is contained in the complement of a cone

Cv,q, this is
n c n+1 X
X" C (Cya) =4 X e R W,V <a,ac(0,1),.
Define the function ¢ : ¥ — R by
(3.5) P(x) == (X(2),V) — al| X (2)[| <0.
Since for any Uy, Us € T,

(3.6) Ui((X, V) =(Uy,V) and UU({(X,V)) = (Vi,Up, V),
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we have V(X,V) = V. This gives
Vy=V"
b= - aV(S(b

and then, by (3.1),

V[ = | aVol 2 (V' = a7 -
1 Xl
Now, choosing an orthonormal frame {e1, eq, ..., e,}, defined on X", formed

with the eigenvectors of P._1 corresponding to eigenvalues A;, we have that
Hess(X, V) (ei, ej) = eie;((X,V)) = Ve,e;((X, V)
= (Ve,e, V) = (Vese5, V)
= (Bl(ei, €j), V)
= (A(ei), ¢j)(N, V).
Recalling that (see Lemma 2.1, p.279 of [9])
(3.7) trace(Pr—1) = (n —r+1)o,—1 and trace(Ao P,_;) = roy,

we have

L,_1(X,V) = trace(P,_1 o hess(X,V))

= Z<Pr—l(heSS<X’ V>(62))’ €i>

i=1

= Z(hess(X, V) (ei), Pr—1(ei))
i=1

= Z Ai(hess(X, V) (e;), (e:))
i=1

=) X\ Hess(X,V)(e;,e)
(3.8) =

= Z )\i<A(6¢), €i><N, V>
=1

n

= (Alei), Pr_1(e))(N, V)
=1

= (ei, AP, 1(e;))(N,V)

i=1
= trace(A o P._1)(N,V)

= r0.(N,V).
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This implies,
Lr—lw = LT‘—1<X7 V> - aLr—150

=ro.(N,V) —aL,_10g

= 7’0’3 - aLr_ldg.
Since 9 is bounded from above, and assuming either condition (i) or (ii) in
the statement of Theorem 1.1, we may apply Theorem 2.1, p.11. Indeed,
if (1.7) or (1.8) hold, then (2.8) or (2.9) follows, respectively, while (2.10)

is automatically satisfied since |o,| < 1 for translating solitons. Therefore,

there exists a sequence of points {xy}r C X" such that

(3.9) lim v (zx) = supy <0,
k—o00 »n

1 T [

(3.10) 7 > IVl 2 IV (zx)ll - a 7
[ ll
and
1 2
(3.11) e L,_1¢(zy) = rloy(xk)]* — aLr—100(zk).
By (3.10), it holds
1 g 1

3.12 Vi) - = <aEr < = 4 [V (@)

If o.(7) = (N(zg),V) — 0, when k — oo, then ||V ()| — 1. Thus, by
(3.12),

-
1
lim | =->1,
k—o0 ||$k|| a
which is an absurd.
In the general case, since |o,.| = [(N, V)| < 1, there exists a subsequence

{zf, } such that o, (zy,) converges for [ — co. This implies that

IV (@) 12 =1 = (V. N(2g,))* = 1 = [0 ()]
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converges, and by (3.12), the sequence chng/ ||zk,|| also converges. There-

fore,

Jim (1= [ov(on)J?) = lim (1= (V,N(on))?)

= lim [V ()|
l—o0

T2

T
=a? lim I,
=00 kal

_ &2 lim (1 _ (Cﬁkl,N(l’kl»z) '

[=00 [l 12

12

This implies
. 2 (1 — oz N2 = a2 lim (o (20 )12 _<wan(37kz)>2
Jimfo o (1 = o ) = o fim fo o (1= S22 ),

ie.,

lim ([O’r(xkl)]4 —(1- 02)[07‘(3%)]2)

l—o00

(3.13) . 2
:a2lli1(1>10[ar(xkl)]2< b N(wkl)>.

— [

In particular,

lim ([an(a:kl)]2 - (1- a2)) > 0.

l—o00

On the other hand, by (3.11) and (3.4), we have

= > Lo (o)

= rlov(zx)]* — aLr—1]lzx|

Zﬂm@wV*W%WW*T+DWAQW+Wm@w@mN@wH

1 T T
+W<PT—1xk7xk>

> 1o (25)) — ﬁ[(n — 7+ Doy_1(z) + rov(zp) @r, N(z))]

T or(T 2_ a\n —r M — ar |O,\T & X
= rlortadlt = ol =+ D o) (o))
This implies

or—1(xy) 2

Lt atn—r+ 22208 o

- o]

—ar

ovton) (2 N ) ).
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Thus, using (3.13) and passing to the subsequence zy,, we obtain

L lim [;—i-a(n—r—l—l)%_l(xkl)}
I

r l—oco kalH
(3.15) > lim [0 (a3,))° — VIow ()1t = (1= a2)[oy (a,))?

= lima ([or(z,)]?)

where a : [1 — a?,1] — R is defined by

alt) =t —+/t? — (1 — a?)t.

Since o/(t) < 0, « is a decreasing function with minimum value at ¢t = 1,

a(l)y=1-a.

In order to conclude the proof, let us consider separately the cases of

conditions (i) and (ii) of Theorem 1.1. First, let us assume condition (ii) of

Theorem 1.1. This implies that o,_; is bounded and " is not necessarily

proper.

Observe that the region (Cyq) is invariant by translations in the direction
—V, ie, if " C (Cy,q)¢, then (X7"); := X" —tV C (Cy,q)¢ for any t > 0.

Moreover, since X" is a translating soliton with velocity vector V', each

(X™); is also a translating soliton with the same velocity vector V. Then,

considering X" as one of the (3"), if necessary, we can assume that

2a(n —r+ 1) supsn or—1

inf o] >
Zn

r(l—a)
This gives
1 1 o —1($k)
0> 1 -1 D ol
Jim o (o0 (2,)?) = lim {kl e P
>1—a—~lim |~ DS 2]
21 i | ratn e DT
1—a
- 2
>0

which is an absurd.

Now, assume that condition (i) of Theorem 1.1 holds, i.e., 3" is properly

immersed and

11msup Ur 1(2) rl—a) ,
z)—o00 00() aln—r+1)
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(the difference between § and g is a constant). This gives

. 1. 1 or—1(Tg,)
0>1 H-_-1 — — 1)/
> fim o (on(2)7) = lim, [k, tan—r+l) N
1 _
>1—a— - lim {—I—a(n r—l—l)(m(%)}
7 l—o0 ]{31 H.%'le
>0
and we obtain an absurd again. O

4. PROOF OF THEOREM 1.2

Proof of Theorem 1.2. Let ¥™ C R™! be a properly immersed translating
soliton of the r-mean curvature flow, with velocity V and operator P._;

positive semidefinite satisfying (1.9). Suppose ¥ C Hyy, where
Hw = {X e R"H (X, W) <0, (V,W) >0, [[W] =1}
Let ¢ := (V,WW) > 0 and define ¢ : ¥ — R by ¢(x) = (X (z), W). By using
(3.6) and (3.8) with W in the place of V, we have
Vi =Ww"
and
L,_1¢ = ro,(N,W).

Since, by hypothesis, ¢ < 0, by Theorem 2.1, p.11, there exists a sequence
of points {xy}; C X" such that

(4.1) lim ¢(x) =supvy <0,

k—o0 »n

1
(4.2) e IV ()| = W (zx) T[I* = 1 = (W, N(2x))* > 0,
and
1

(4.3) % > Lr—lw(xk) = TJT(l'k)<N(xk), W)
Thus
(4.4) lim (W, N (z))? = 1.

k—o0
Since, for any orthonormal frame {ej,...,e,} on X",

W= (W,ee; + (W, N)N,
=1
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we have, by (4.4), that

n

lim Z(VV, ei(z))2 = 0.

k—o00 4
=1

Moreover,

(V. W) <zn:<v7 ei)ei +(V, N>N’zn:<W7 6j>6j+ (W, N>N>

i—1 j=1

I
NE

(Viei)(W,ei) + (V, N)(W,N)
1

and the estimate [(V,e;(zk))| < [|[V||lei(zx)|| < 1, imply

0 > lim Lr_l’(ﬁ(xk)
k—o0

-.
Il

=7 lim (N(xy), V)(N(zk), W)

=r <‘/'7 W) — lim <‘/, ez(l'k»(ez(xk)a W>

k—o00 4
=1

=r(V,W)y=r-c>0,

which is a contradiction. O

5. PROOF OF THEOREM 1.3

Proof of Theorem 1.3. This proof is inspired by Borbely’s proof (see [14])
that complete minimal surfaces satisfying the Omori-Yau maximum princi-
ple cannot be in the intersection of two transversal vertical half-spaces.

Let X" C R™*! be a translating soliton of the r-mean curvature flow with
velocity V and P._1 > eI, ¢ > 0. Suppose, in addition, that o,_1 satisfies
(1.10). We are going to show that X" cannot be contained in the intersection
of two transversal vertical half-spaces.

Let
Hi=Hp,w,) = {X eR"(X - B;,W;) >0}, i=1.2,

be two transversal vertical halfspaces. In order to simplify the proof, we can

choose a system of coordinates of R"*! such that
V=FE,1=(0,...,0,1),
B; =(0,...,0), 3= 1,2 and, by a rotation, we may consider

Wi = (a,b,0,...,0), Wa=(a,—b,0,...,0),
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where a,b > 0 and a? 4+ b?> = 1. In this system of coordinates, we have that
Pi=0H; = {X e R"" (X, W;) =0}, i=1,2.

Denote by P;(R) := P; + RW; = {X € R""1; (X W;) = R} the hyperplanes
parallel to P; and by L(R) be the (n—1)-hyperplane L(R) = P1(R)NP2(R).
Since the coordinates of each hyperplane P;(R), i = 1,2, satisfy the equation

azxy + (—1)"tbxs = R,
we have
R n—1
£(R): g,0,$3,...,xn+1 ;(w3,-..7$n+1)€R .

Define

R\ 2
(5.1) dr(z) = distgn+1(z, L(R)) = \/(:cl — a> + 3,
for x = (71, 22,...,7p41) € R"L and consider the cylindrical region
D(R) = {z € R"";dp(z) < R}.

The cylindrical region D(R) separates (H1 NHz) \ D(R) into two regions,
one with dr(z) bounded (which we denote by Vr) and another where dg(z)

is unbounded (see Figure 2).

FIGURE 2. Regions in the intersection of vertical halfspaces
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We assume, by contradiction, that there exists a complete, properly im-
mersed, translating soliton of the r-mean curvature flow, with P._; > el,
for e > 0, such that o,_; satisfies (1.8) and X" C H; N Ha.

Since Vr — H1 N Hgo when R — oo, we can assume R > 0 large enough
such that ¥" N Vg # 0. Let us denote by V the gradient and connection
of R™ ! and by Hess the hessian quadratic form of R"*!. The following
facts are straightforward calculations about the function d(z) := dg(x), for
x € (H1NH2)\L(R) :

(i) Hess d(z)(Vd,Vd) = 0 which implies that Vd is an eigenvector of
Hess d with eigenvalue zero;

(ii) Since d(x) does not depend on 3, . .., Tp41, the vectors Es, ..., Epyq
of the canonical basis of R"*! are also eigenvectors of Hess d with
eigenvalue zero;

(iii) The last eigenvector of Hess d is given by
For this eigenvector, the eigenvalue is 1/d.

These facts imply that the set {Vd, x, E3, . .., Ent1} is an orthonormal frame
of R™*1 given by eigenvectors of Hess d. This implies that any vector field

Y € R"" can be written as

n+1
(5.2) Y = (Y,Vd)Vd + (Y, x)x + > (Y, E;)E;.
=3
Moreover, for any Y, Z € R*H,
1
(5.3) Hess d(Y,Z) = a(Ya X)(Z, X)-

Now, let f: X" — R be defined by
dr(x), if xe€X"NVg,
flz) =
R, if xe€X™"\Vg.
Notice that f is continuous and differentiable everywhere, except for points
of ¥ N (0Vr N OD(R)). Moreover R < f(z) < R/a (since 0 < a < 1) and
R<supf <R/a< o0,
En

since X" N Vi # 0 and f(z) > R for z € X" N Vg (see Figure 2). The

following calculations will be carried out at points = € ¥™ N Vi where the
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function dg is differentiable. Since

(5.4) Vf=(Vd)'" =Vd—- (Vd)* =Vd - (Vd,N)N

n+1
1=(x,N)>+(Vd,N)> + > (E;,N)?
j=3
> (x, N)? + (Vd,N)?,

we have

(55 VS = IVdI? - (Vd, N)2 = /1 - (Va, N)2 > |{x, )],

provided || Vd| = 1.

If {e1,ea,...,e,} is an orthonormal frame of X", given by eigenvectors of

the second fundamental form, then

Z% d(ei, Pr_l(ei)) = %Z<eiax><Pr—1(ei)7X>

(5.6) i=1 z‘?
1
= g Z A’i<e’u X>27
i=1
where ); is the eigenvalue of P,_1 relative to the eigenvector e;, i = 1,...,n.

Since, by hypothesis, A; > ¢ > 0 and
n

Z<€i,X>2 =1- <N7 X>27

=1

n B 2
(5.7) S Hoss d(ei, P (e)) > (W) |

i=1

On the other hand, for any Y, Z € TY", and for points x € X" N Vg,

Hess f(Y,Z) =Hess d(Y,Z) + (Vd, N)(A(X),Y),
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where A is the shape operator of ¥". This gives, for any orthonormal frame
{61, €2y .y en} of TE”,

L,_1f =trace(hess fo P,_1) = ZHQSS flei, Pr—1(ei))
i=1

= Hess d(ei, Pro1(e)) + (Vd,N) > (Ales), Pr1(es))

i=1 i=1

= ZHess d(e;, Pr_1(e;)) + r0.(Vd, N)

=1

= Hess d(e;, Pr_1(ei)) + r{Ens1, N)(Vd, N),
=1

where we used that

n

D (Alei), Proi(es)) = trace(AP,_1) = roy,

=1

and that o, = (Ey11, N). Combining (5.8) with (5.7), we obtain
1—(x,N)? =
(5.9) Lr_lf Z g <<>§7>> -+ T(En+1,N><Vd, N>

Since f is bounded, f(z) = R for x € ¥™\Vg and sups. f > R, by Theorem
2.1, p.11, there exists a sequence {zy}x of points in X" N Vg such that
(5.10)

Jim f(zy) = Sup f, im [[Vf(zg)[| =0 and  limsup L,y f(zy) < 0.

k—o0

Now, let us analyze the last term of (5.9). First notice that, since

(Epy1,Vd) =0,
we have
(Ent1,N)? = (Bpp1, N £ Vd)?
(5.11) < ||N + Vd|?

= 2(14 (N, Vd)).
Using (5.5) and the second limit in (5.10), we obtain that
(5.12) lim (N (z), Vd(xx))? = 1.
k—oo
It means that there exists at least one subsequence (which we also denote

by {x}r to simplify the notation) such that

lim (N (), Vd(zg)) =1 or lim (N(xy), Vd(zy)) = —1.

k—o0 k—o0
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In both cases, we can use (5.11) to obtain

(5.13) lim (B, N(z)) = 0.
k—00

This implies
(5.14) Jim (Epg1, N(zp)) (N (2x), Vd(az)) = 0.
On the other hand, by (5.5) and (5.10), we have

(5.15) lim (N (zg), x(zx)) = 0.

k—o0

Thus, by using (5.9), (5.10), and (5.15), we have

0 > limsup L,—1 f(xk)

k—o0
_ 2
> elimsup (1 (N (k) x(@n)) )
k00 d(zk)
+ rlimsup(Ey 1, N(2x)) (N (x1), Vd(zr))
k—o00
ea
> 5,
~ R
which is a contradiction. Here we used that d(x) < R/a. Thus, there is no
such translating soliton. O
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