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Abstract

In this article, under mild constraints on the sectional curvature, we exploit a divergence formula for 
symmetric endomorphisms to deduce a general Poincaré type inequality. We apply such inequality to 
higher-order mean curvature of hypersurfaces of space forms and Einstein manifolds, to obtain several 
isoperimetric inequalities, as well as rigidity results for complete r-minimal hypersurfaces satisfying a 
suitable decay of the second fundamental form at infinity. Furthermore, using these techniques, we prove 
flatness and non-existence results for self-similar solutions to a large class of fully nonlinear curvature 
flows.

1. Introduction

In the last decades, many mathematicians investigated the existence of nice embeddings be-
tween spaces of functions and estimates providing regularity of solutions to some PDE’s. For a 
domain � in Rn, a classical estimate that allow us to obtain interesting information on the space 



W
1,p

0 (�), 1 ≤ p < n, is the Poincaré inequality. The reader can learn more about the subject in 
[34], [46], [15], [27], [47] and references therein.

Various consequences of Poincaré type inequalities have been obtained in the literature. For 
instance, estimates of the volume growth, spectral and regularity of solutions to elliptic equations, 
estimates of the number of harmonic L2 1-forms, of the number of ends of a manifold, and others. 
We point out that some rigidity results are achieved from these inequalities under additional 
constraints on the curvatures, see [20] and [49].

1.1. Results

In this work, we establish a general Poincaré type inequality on submanifolds of suitable Rie-
mannian ambient spaces. Using such estimate and additional mild conditions we obtain rigidity 
results for hypersurfaces of space forms and of suitable Einstein manifolds, as we briefly describe 
in the following.

(i) We prove isoperimetric inequalities for domains of hypersurfaces of Rm+1; and
(ii) that (r + 1)-minimal hypersurfaces of the space forms, satisfying a suitable decay on the 

integral of the r-mean curvature over the annuli of geodesic balls at infinity, are foliated by 
totally geodesic submanifolds, becoming cylinders or totally geodesic hypersurfaces if their 
Ricci curvature is bounded from below.

(iii) We also prove that hypersurfaces with a determined constant scalar curvature in Einstein 
manifolds are totally geodesic, provided the integral of their mean curvature over geodesic 
spheres satisfies a suitable decay; and

(iv) a rigidity result for the hyperplane as the only homothetic self-similar solutions to a wide 
class of fully nonlinear curvature flows.

1.2. Organization of the paper

In section 2 we present the basic computations of this work. In section 3 we state our main 
general inequality and apply it for the setting of higher-order mean curvature and to derive 
isoperimetric inequalities. In section 4 we obtain the rigidity results in items (ii) and (iii) above 
as a consequence of our Poincaré type inequality. We conclude the paper by proving, in section 5, 
rigidity results for self-similar solutions to some fully nonlinear curvature flows.

2. Notations and preliminaries

Let M be a hypersurface of a Riemannian (m + 1)-manifold M
m+1

. Denote by ∇ and ∇
the connections of M and M

m+1
, respectively. Given X : M → T M

m+1
a vector field, write 

X = X� + X⊥, where X� ∈ T M and X⊥ ∈ T M⊥. Denoting by 〈·, ·〉 the metric of M and by 
B(Y, Z) = ∇Y Z −∇Y Z the second fundamental form of M , where Y, Z ∈ T M are vector fields, 
we have

〈∇Y X,Z〉 = 〈∇Y X� + ∇Y X⊥,Z〉
= 〈∇Y X�,Z〉 − 〈X⊥,B(Y,Z)〉.

If η is a normal vector field, then X⊥ = 〈X, η〉η. It implies



〈∇Y X,Z〉 = 〈∇Y X�,Z〉 − 〈X,η〉〈η,B(Y,Z)〉
= 〈∇Y X�,Z〉 − 〈X,η〉〈A(Y),Z〉,

(1)

where A : T M → T M is the Weingarten operator in direction η which is given by

〈A(V ),W 〉 = 〈η,B(V,W)〉, V ,W ∈ T M. (2)

We first state a general divergence formula which will be useful for us in the next section. 
A similar formula was obtained by the first and third named authors in [2].

Proposition 2.1. If M is a hypersurface of a (m + 1)-dimensional Riemannian manifold M
m+1

, 
m ≥ 2, and X : M → T M is a vector field, then, for every symmetric linear operator T : T M →
T M and every smooth function f : M → R, it holds

divf (T (X�)) = −〈X�, T (∇f )〉 + tr
(
E �→ T

((∇EX
)�))

+ 〈X,η〉 tr(AT ) + (divT )(X�).

(3)

Here, divf (Y ) = ef div(e−f Y ) is the weighted divergence, (divT )(Y ) = tr(E �→ (∇ET )(Y )), 
and tr denotes the trace of the operator.

Proof. Let {e1, e2, . . . , em} be an orthonormal frame in T M and X ∈ T M . First, since T is self-
adjoint, we have

tr
(
E �→ T

((∇EX
)�))

=
m∑

i=1

〈
T

((∇ei
X

)�)
, ei

〉
=

m∑
i=1

〈∇ei
X,T (ei)〉. (4)

By using (1), p. 158, and the self-adjointness of A, we obtain

m∑
i=1

〈∇ei
X,T (ei)〉 =

m∑
i=1

〈∇ei
X�, T (ei)〉 −

(
m∑

i=1

〈A(ei), T (ei)〉
)

〈X,η〉

=
m∑

i=1

〈∇ei
X�, T (ei)〉 −

(
m∑

i=1

〈(AT )(ei), ei〉
)

〈X,η〉

=
m∑

i=1

〈∇ei
X�, T (ei)〉 − tr(AT )〈X,η〉.

Thus,

m∑
i=1

〈∇ei
X�, T (ei)〉 = tr

(
E �→ T

((∇EX
)�))

+ tr(AT )〈X,η〉.

On the other hand, the self-adjointness of T implies



m∑
i=1

〈∇ei
X�, T (ei)〉 =

m∑
i=1

〈∇ei
X� + B(ei,X

�), T (ei)〉

=
m∑

i=1

〈T (∇ei
X�), ei〉

=
m∑

i=1

〈∇ei
(T (X�)), ei〉 −

m∑
i=1

〈(∇ei
T )(X�), ei〉

= div(T (X�)) − tr(E �→ (∇ET )(X�))

= div(T (X�)) − (divT )(X�).

Therefore,

div(T (X�)) = tr
(
E �→ T

((∇EX
)�))

+ (divT )(X�) + tr(AT )〈X,η〉.

Since

divf (Y ) = ef div(e−f Y ) = div(Y ) − 〈∇f,Y 〉, Y ∈ T M,

we conclude the result. �
In the next lemma we will estimate tr

(
E �→ T

((∇EX
)�))

for a special vector field X, in 

terms of trT , the distance function of M and the bounds of the sectional curvatures of M . This 
result is essentially in [14], Proposition 2.2, p. 109, but by the difference of notations between 
the two articles and by the sake of completeness, we include a (different) proof here.

Lemma 2.1. Let M
m+1

, m ≥ 2, be a Riemannian (m +1)-dimensional manifold whose sectional 
curvatures satisfy

SectM(V ,∇ρ) ≤ −G′′(ρ)

G(ρ)
, ∀ V ∈ T M, V ⊥ ∇ρ,

for a class C2 nondecreasing function G : [0, b) → R, which is positive on (0, b) for some b > 0, 
and ρ(x) = ρ(x0, x) is the geodesic distance of M

m+1
starting at a point x0 ∈ M

m+1
. Let M

be a hypersurface of M
m+1

and T : T M → T M be a nonnegative symmetric linear operator. If 
x ∈ M satisfies ρ(x) < i(M, x0), where i(M, x0) is the injectivity radius of M

m+1
at x0, then the 

vector field X = G(ρ)∇ρ satisfies

tr
(
E �→ T

((∇EX
)�))

(x) ≥ G′(ρ(x))(trT )(x). (5)

Proof. Let {e1, e2, . . . , em} be an orthonormal basis of TxM composed by eigenvectors of T in 
x ∈ M , i.e.,

T (ei(x)) = θi(x)ei(x), i = 1,2, . . . ,m.



Since we are assuming that ρ(x) < i(M, x0), the function ρ is differentiable. Thus

tr
(
E �−→ T

((∇EX
)�))

=
m∑

i=1

〈∇ei
X,T (ei)〉 =

m∑
i=1

θi〈∇ei
X, ei〉

=
m∑

i=1

θi〈∇ei

(
G(ρ)∇ρ

)
, ei〉

=
m∑

i=1

θi

[
G′(ρ)〈∇ρ, ei〉2 + G(ρ)HessM ρ(ei, ei)

]
.

By using the hypothesis and the hessian comparison theorem (see Theorem 2.3, p. 29 of [54]), 
we have

HessM ρ(ei, ei) ≥ G′(ρ)

G(ρ)
[〈ei, ei〉 − 〈∇ρ, ei〉2].

This gives

tr
(
E �→ T

((∇EX
)�))

≥ G′(ρ)

m∑
i=1

θi〈ei, ei〉 = G′(ρ)

m∑
i=1

〈T ei, ei〉

= G′(ρ)(trT ). �
Remark 1. Notice that, in M

m+1 = [0, b) ×Sm, with the metric 〈·, ·〉M = dt2 +G(t)2dω2, where 
dω2 is the metric of Sm, the inequality in the Lemma 2.1 becomes an equality and we do not 
need to assume that T is nonnegative definite, i.e., for hypersurfaces of M

m+1
and for every 

symmetric linear operator T : T M → T M we have

tr
(
E �→ T

((∇EX
)�))

= G′(ρ)(trT ).

3. Poincaré type inequality

In the next results, we denote by BR(x0) the extrinsic ball of M
m+1

with center at x0 ∈ M
m+1

and radius R. We also denote by i(M, x0) the injectivity radius of M
m+1

for geodesics starting 
at x0 ∈ M

m+1
.

Theorem 3.1. Let M
m+1

, m ≥ 2, be a Riemannian (m + 1)-dimensional manifold whose sec-
tional curvatures satisfy

SectM(V ,∇ρ) ≤ −G′′(ρ)

G(ρ)
, ∀ V ∈ T M, V ⊥ ∇ρ, (6)

for a class C2 nondecreasing function G : [0, b) → R, which is positive on (0, b) for some b > 0, 
and ρ(x) = ρ(x0, x) is the geodesic distance of M

m+1
starting at a point x0 ∈ M

m+1
. Let M be a 



hypersurface of M
m+1

, T : T M → T M be a nonnegative symmetric linear operator and � ⊂ M

be a connected and open domain with compact closure such that � ∩ ∂M = ∅. If � ⊂ BR(x0)

with R < i(M, x0), then, for every class C1 functions u, f : M → R, with u nonnegative and 
compactly supported in �, we have

∫
�

G′(ρ)u(trT )e−f dμ ≤ G(R)

∫
�

|T (∇u − u∇f )|e−f dμ

+ G(R)

∫
�

u [|| tr(AT )| − (divT )(∇ρ)|] e−f dμ.

(7)

Moreover, if M
m+1 = [0, b) × Sm, with the metric 〈·, ·〉M = dt2 + G(t)2dω2, where dω2 is the 

metric of Sm, then it is not necessary to assume that T is nonnegative.

Proof of Theorem 3.1. For every nonnegative class C1 function u : M → R, it holds

divf (uT (X�)) = ef div(e−f uT (X�))

= udivf (T (X�)) + 〈∇u,T (X⊥)〉,

and so we have, using Proposition 2.1 and Lemma 2.1 for X = G(ρ)∇ρ,

divf (uT (X�)) ≥ G(ρ)〈∇ρ,T (∇u − u∇f )〉 + uG′(ρ)(trT )

+ uG(ρ)〈∇ρ,η〉 tr(AT ) + uG(ρ)(divT )(∇ρ).

On the other hand, by divergence theorem,

∫
�

divf (uT (X�))e−f dμ =
∫
�

div(e−f uT (X�))dμ = 0,

which implies, after integration and some rearrangement,

∫
�

uG′(ρ)(trT )e−f dμ ≤
∫
�

G(ρ)〈−∇ρ,T (∇u − u∇f )〉e−f dμ

+
∫
�

uG(ρ)〈−∇ρ,η〉 tr(AT )e−f dμ

+
∫
�

uG(ρ)(divT )(−∇ρ)e−f dμ.

(8)

Since � ⊂ BR(x0), then, for all x ∈ �, it holds ρ(x) ≤ R. Now, since G is increasing and by 
using Cauchy-Schwartz inequality, we have



∫
�

uG′(ρ)(trT )e−f dμ ≤ G(R)

∫
�

|T (∇u − u∇f )|e−f dμ

+ G(R)

∫
�

u || tr(AT )| − (divT )(∇ρ)| e−f dμ.

This gives (7). When M
m+1 = [0, b) × Sm, with the metric 〈·, ·〉N = dt2 + G(t)2dω2, the result 

follows from Remark 1. �
Remark 2. If M

m+1
has constant sectional curvature, then, in the statement of Theorem 3.1, 

we can choose the base point x0 in order to minimize R. In this case, we can replace R by 
(diam�)/2 in the Poincaré formula (7), assuming diam� < 2i(M), where diam� and i(M)

denote the extrinsic diameter of � and the injectivity radius of M
m+1

, respectively.

3.1. Space forms and the r-mean curvature

For an oriented hypersurface M of M
m+1

, we recall that the eigenvalues λ1, λ2, . . . , λm of A
are called principal curvatures. The symmetric functions associated to the immersion are given 
by

Sr =
∑

i1<...<ir

λi1 · · ·λir , (9)

where (i1, . . . , ir ) ∈ {1, 2, . . . , m}r . The r-mean curvature of M is defined by

Hr = 1(
m
r

)Sr . (10)

When r = 1, we have H1 = H = 1
m

trA, the mean curvature of M . For r = 2 and M = Rm+1, 
H2 = 1

m(m−1)
Scal, where Scal is the non-normalized scalar curvature of M , and for r = m, we 

have that Hm = detA is the Gauss-Kronecker curvature of M .
We recall that a hypersurface M of M

m+1
is called r-minimal if Hr vanishes on M . Properties 

of hypersurfaces involving the r-mean curvature, including the case of r-minimal hypersurfaces, 
have been object of research by many authors as, for example, [37], [44], [33], [6], [9], [39], [52], 
and [16].

Associated to the family of higher-order mean curvatures we have the Newton transformations 
Pr : T M → T M , r ∈ {0, . . . , m}, which are defined recursively as

P0 = I, Pr = SrI − APr−1,

where I : T M → T M is the identity operator. Clearly Pr is a self-adjoint operator and APr =
PrA. This operator has nice properties related with the symmetric functions Sr . We first point 
out the following properties:

Lemma 3.1. For each 0 ≤ r ≤ m − 1 it holds:



(1) trPr = (m − r)Sr ;
(2) trAPr = (r + 1)Sr+1;
(3) trA2Pr = S1Sr+1 − (r + 2)Sr+2.

Proof. See [55] and [13]. �
Definition 3.1. Let Qm+1

c be a (m + 1)-dimensional, simply-connected, complete Riemannian 
manifold with constant sectional curvature c. If c > 0 consider Qm+1

c = Sm+1+ (c) be the open 
upper hemisphere. We call these manifolds space forms.

Before stating the consequences of Theorem 3.1, we show sufficient conditions for the diver-
gence of Pr to vanish. Such result is well-known in literature, see [55] and [56].

Lemma 3.2. The divergence of the Newton transformations Pr vanishes, if the ambient manifold 
M is a space form.

In order to state the next Poincaré type inequality, we need to define the special functions

Sc(t) =

⎧⎪⎪⎨
⎪⎪⎩

t, if c = 0;
1√−c

sinh(
√−ct), if c < 0;

1√
c

sin(
√

ct), if c > 0.

(11)

For space forms and Newton transformations we have the following result:

Theorem 3.2. If M is a hypersurface of Qm+1
c and � ⊂ M , � ∩ ∂M = ∅, is a connected and 

open domain with compact closure, then, for every class C1 functions u, f : M → R, with u
nonnegative and compactly supported in �, we have

∫
�

uSrS ′
c(ρ)e−f dμ ≤ C0

∫
�

[|Pr(∇u − u∇f )| + (r + 1)|Sr+1|u
]
e−f dμ, (12)

for C0 = 1
(m−r)

Sc

(
diam�

2

)
. In particular, if Pr : T M → T M is nonnegative definite, then

∫
�

uHrS ′
c(ρ)e−f dμ ≤ C1

∫
�

[|∇u − u∇f |Hr + |Hr+1|u
]
e−f dμ, (13)

for C1 = (m − r)C0. Moreover, the equality holds if M is a geodesic sphere, � = M , and f, u
are constant functions.

Here, ρ : M → R+ is the distance function of Qm+1
c , restricted to M , from a base point 

x0 ∈Qm+1
c chosen to minimize the radius of the extrinsic ball BR(x0) ⊇ �, (see Remark 2), Sr is 

the r-th symmetric function of the eigenvalues of M , Hr = (
m
r

)−1
Sr is its r-mean curvature, and 

diam� denotes the extrinsic diameter of �.



Proof. Indeed, in Qm+1
c we have (6) for G(t) = Sc(t) and using Lemma 3.2, it holds divPr = 0

in space forms. From the second item of Lemma 3.1, we have tr(APr) = (r + 1)Sr+1 and, by 
Theorem 3.1 and Remark 2, we obtain (12). Moreover, if Pr is nonnegative definite, then

|Pr(U)| ≤ (trPr)|U | = (m − r)Sr |U |,

which, together with 
(

m
r+1

)(
r+1
m−r

)(
m
r

)−1 = 1, gives (13), as desired. In order to verify the equal-

ity, just notice that, in geodesic spheres of radius R, it holds

λ1 = · · · = λm = S ′
c(R)

Sc(R)
.

The equality follows by direct substitution. �
Remark 3. There are some conditions to deduce that Pr is nonnegative definite on a connected 
hypersurface. We point out some of them below:

(a) If Sr+1 = 0, then Pr is semi-definite. Thus, if r is odd, then we can choose an orientation 
such that Pr is nonnegative definite;

(b) If Sr+1 = 0, r is even, and Sr ≥ 0;
(c) If r is odd, Sr+1 = 0, and Sr+2 �= 0, then we can choose an orientation such that Pr is positive 

definite;
(d) If r is even, Sr+1 = 0, Sr+2 �= 0, and Sr ≥ 0, then Pr is positive definite;
(e) If Sk > 0 for some 1 ≤ k ≤ m − 1 and there exists a point where all the principal curvatures 

are nonnegative, then Pr is positive definite for every 1 ≤ r ≤ k − 1.

The proofs of these claims can be found in [19], Proposition 2.8., p. 192, (for items (a) to (d)), 
[23], Proposition 3.2, p. 188, (for item (e)).

In the following, we present some applications of the Poincaré inequalities of Theorem 3.2. 
Denote by dμ the m-dimensional Lebesgue measure of M and by dSμ the (m − 1)-dimensional 
Lebesgue measure of the boundaries of the m-dimensional subsets of M . We also denote the 
volume of a set � by |�| and by BR ⊂ M the geodesic ball of M with radius R and center at a 
point x0 ∈ M , and by ∂BR its boundary, i.e., the geodesic sphere of radius R and center at x0. 
We omit the center of ball in the notation since it will not be important in the statements of the 
results.

Corollary 3.1. Let M be a hypersurface of Rm+1 such that Hr+1 > 0, r = 1, 2, . . . , m − 1, and 
� ⊂ M , � ∩ ∂M = ∅, be a connected and open domain with compact closure. If M has a point 
whose all the principal curvatures are nonnegative, then

|�| ≤
r∑

k=0

(
diam�

2

)k+1 ∫
∂�

HkdSμ +
(

diam�

2

)r+1 ∫
�

Hr+1dμ. (14)

Here, Hr is the r-mean curvature of M , defined by (10), and diam� is the extrinsic diameter of 
�.



Proof. Taking f ≡ 1 and u = uε in (13), where

uε(x) =
⎧⎨
⎩

1, if dist(x, ∂BR) ≥ ε;
1

ε
dist(x, ∂BR), if dist(x, ∂BR) < ε,

(15)

and dist stands for the distance function on M , we obtain letting ε → 0 and using the coarea 
formula,

∫
�

Hrdμ ≤ diam�

2

⎡
⎣∫
∂�

HrdSμ +
∫
�

Hr+1dμ

⎤
⎦ . (16)

By applying successively (16) and using Remark 3, item (e), we obtain the result. �
Remark 4. In particular, for r = 0, we have

|�| ≤
(

diam�

2

)⎡
⎣|∂�| +

∫
�

Hdμ

⎤
⎦ , (17)

and for r = 1, we obtain

|�| ≤
(

diam�

2

)
|∂�| +

(
diam�

2

)2
⎡
⎣∫
∂�

HdSμ + 1

m(m − 1)

∫
�

Scal dμ

⎤
⎦ , (18)

where H is the mean curvature and Scal is the (non-normalized) scalar curvature of M .

Remark 5. Isoperimetric inequalities in the spirit of (17) were obtained by the first and the third 
authors in [3] for immersions in warped product manifolds. We can also compare the previous 
results with Theorem 2 in [48], which states that

∫
M

Hkρ
pdμ ≤

∫
M

Hrρ
p+r−kdμ

for every closed hypersurface M of Rn+1 satisfying Hr > 0 and for every p > 0 and 0 ≤ k < r

(compare also with the results of [40]). Moreover, they prove that equality holds only for round 
spheres. On its turn, by the proof of our Poincaré type inequality (12), we obtain

∫
M

Hr−1dμ ≤
∫
M

ρ|Hr |dμ (19)

for every closed hypersurface M , by taking u and f constant functions, with equality holding for 
round spheres.



For a weakly locally convex hypersurface (i.e., M has nonnegative second fundamental form), 
Pr is nonnegative definite for every r = 1, . . . , m − 1. Applying successively inequality (13), 
m − 1 times, for f ≡ 1, and u = uε we obtain, letting ε → 0 and using the coarea formula:

Corollary 3.2. If M is a weakly locally convex hypersurface of Rm+1, then the volume of any 
geodesic ball BR of M with radius R satisfies

|BR|
Rm

≤
[
(R max∂BR

|A|)m − 1

(R max∂BR
|A|) − 1

] |∂BR|
Rm−1 +

∫
BR

Hmdμ, (20)

where Hm is the Gauss-Kronecker curvature of M and |A| is the matrix norm its second funda-
mental form. In particular, if there exists α > 0 such that max∂BR

|A| ≤ α/R, then

|BR|
Rm

≤ C(m,α)
|∂BR|
Rm−1 +

∫
BR

Hmdμ, (21)

where C(m, α) = αm−1
α−1 . Moreover, if 0 < α < 1, then

|BR|
Rm

≤ 1

1 − α

|∂BR|
Rm−1 . (22)

Proof. Since λi ≤ |λi | ≤ |A| we have Hr ≤ |A|r . Applying (14) to � = BR and k = m − 1, we 
obtain

|BR| ≤
m−1∑
r=0

Rr+1
∫

∂BR

HrdSμ + Rm

∫
BR

Hmdμ

≤
m−1∑
r=0

Rr+1 max
∂BR

|A|r |∂BR| + Rm

∫
BR

Hmdμ.

This implies

|BR|
Rm

≤
[

m−1∑
r=0

(R max
∂BR

|A|)r
]

|∂BR|
Rm−1 +

∫
BR

Hmdμ,

which gives (20). Inequality (21) is an immediate consequence of (20) and the hypothesis 
max∂BR

|A| ≤ α/R. To conclude (22), observe that Hm ≤ |A|m ≤ αm/Rm, which implies

|BR|
Rm

≤ αm − 1

α − 1

∂BR

Rm−1 + αm

Rm
|BR|,

which gives the result. �



Remark 6. In fact, Corollary 3.2 holds for any hypersurface without any assumption of convex-
ity, by applying successively inequality (12). In this case, (20) becomes

|BR|
Rm

≤ C(m)

[
(R max∂BR

|A|)m − 1

(R max∂BR
|A|) − 1

] |∂BR|
Rm−1 +

∫
BR

|Hm|dμ, (23)

where C(m) is a constant, depending only on m. This constant exists and it holds C(m) ≤ 2m−1
m

. 
In fact, since

Pr =
r∑

k=0

(−1)kSr−kA
k,

and |Sk| ≤
(
m
k

)|A|k , we obtain

|Pr | ≤
r∑

k=0

|Sr−k||A|k ≤
[

r∑
k=0

(
m

r − k

)]
|A|r

=
[

r∑
k=0

(
m

k

)]
|A|r ≤

[
m−1∑
k=0

(
m

k

)]
|A|r

= (2m − 1)|A|r .
By (12) and reasoning as in the proof of Corollary 3.1, we obtain

|�| ≤
m−1∑
r=0

(
diam�

2

)r+1 ∫
∂�

[
|Pr |(

m
r

)
(m − r)

]
dSμ +

(
diam�

2

)m ∫
�

|Hm|dμ, (24)

which gives, for � = BR ,

|BR|
Rm

≤
[

m−1∑
r=0

2m − 1(
m
r

)
(m − r)

(R max
∂BR

|A|)r
]

|∂BR|
Rm−1 +

∫
BR

|Hm|dμ

≤ 2m − 1

m

[
m−1∑
r=0

(R max
∂BR

|A|)r
]

|∂BR|
Rm−1 +

∫
BR

|Hm|dμ,

since 
(
m
r

)
(m − r) = m

(
m−1

r

) ≥ m.

3.2. Einstein manifolds

Recall that a Riemannian manifold M is Einstein if there is a real number λ, called Einstein 
constant, such that its Ricci tensor satisfies

Ric(X,Y ) = λ〈X,Y 〉,X,Y ∈ T M.



Such manifolds are interesting from both mathematical and physical viewpoints. From the view-
point of physics, the metric of Einstein manifolds are solutions to the vacuum Einstein field 
equations. From the mathematical viewpoint, because the metric in such manifolds is a critical 
point of the total scalar curvature with constraints, see for instance [17] for more details.

Example 1 (Space forms). The space forms Qm+1
c are examples of Einstein manifolds with Ein-

stein constant λ = mc.

Next, we present spaces whose sectional curvature is not constant.

Example 2 (Product spaces). Let M = Qp1
c1 ×Qp2

c2 be the product of two space forms. If X, Y ∈
TQp1

c1 and V, W ∈ TQp2
c2 , then the sectional curvatures of M are

SectM(X,Y ) = c1, SectM(V,W) = c2, SectM(X,V ) = 0.

This gives Ric(X) = (p1 − 1)c1 and Ric(V ) = (p2 − 1)c2. Thus, M is Einstein if and only if 
(p1 − 1)c1 = (p2 − 1)c2. The same reasoning holds for an arbitrary product Qp1

c1 ×Qp2
c2 × · · · ×

Qpk
ck

or for an arbitrary product of Einstein manifolds.

Example 3 (Complex projective space). The complex projective space CP m+1 is a compact 
Einstein manifold with sectional curvatures lying in the interval [1/4, 1] and Einstein constant 
m + 2.

Example 4 (Schwarzschild metric). Consider S = R2 × S2 with the metric

ds2 = dr2 + ϕ2(r)ds2
1 + ψ2(r)ds2

2 , (25)

where we use polar coordinates in the plane R2, and ds2
1 and ds2

2 are the metrics on S1 and S2, 
respectively. It can be shown that the sectional curvatures of S satisfy

SectS(X, ∂r ) = −ϕ′′(r)
ϕ(r)

,X ∈ T S1, SectS(V , ∂r ) = −ψ ′′(r)
ψ(r)

,V ∈ T S2,

where −ϕ′′/ϕ = 2ψ ′′/ψ . Choose the functions ϕ and ψ verifying the following differential 
equations:

⎧⎪⎨
⎪⎩

(ψ ′)2 = 1 + Cψ−1,

2ψ ′′ = −Cψ−2,

ψ ′ = αϕ,

for α and C determined by the initial data. To obtain smoothness of the metric at the origin, we 
require that ϕ(0) = 0, ϕ′(0) = 1 and ψ(0) = β , for some β > 0. A simple computation gives 
C = −β and 2α = β−1. With this condition, we have ψ ′′ = (β/2)ψ−2 > 0. A straightforward 
computation shows that the family of metrics (25) have Ricci curvature zero and so (S, ds2) are 
Einstein manifolds, for more details see, for instance, [53], pp. 75–76.



We now bring our attention to a family of Einstein manifolds with a warped product metric. 
Such manifolds are interesting and the reader can learn more about them in [30], [45], [21] and 
[42].

Example 5 (Warped produtcs). Recall that given two Riemannian manifolds (Mn, gM) and 
(Fm, gF ) and a positive smooth function w on M , the warped product metric on M × F is 
defined by

g = gM + w2gF .

We denote it as M ×w F . In [21] the authors notice that M ×w F is an Einstein manifold if and 
only if

RicM − m

w
Hessw = λgM,

where Fm is an m-dimensional Einstein manifold. If M has nonempty boundary, we assume that 
w = 0 on ∂M , see [42].

If M is a hypersurface of an Einstein manifold, then the first Newton transformation P1 has 
divergence zero. This fact was proved in [36].

Lemma 3.3. The divergence of the first Newton transformation P1 vanishes if the ambient man-
ifold M is Einstein.

Notice that, tracing the Gauss equation twice, for an adapted orthonormal frame {e1, e2, . . . ,

em, η}, we have

m∑
i=1

Ric(ei, ei) − Ric(η, η) = Scal − 2S2. (26)

In particular, if M is an Einstein manifold with Einstein constant λ, i.e., Ric(X, Y) = λ〈X, Y 〉, 
then

(m − 1)λ = Scal − 2S2, (27)

where Scal denotes the scalar curvature of M .
Fix x0 ∈ M

m+1
. Let Bt(x0) be a ball of M

m+1
with center at x0 and radius t > 0, and γ be a 

geodesic ray such that γ (0) = x0. Define Fx0 : [0, i(M, x0)) → R+ by

Fx0(t) = max
Bt (x0)

{
SectM(V ,γ ′),∀ V ∈ T M,V ⊥ γ ′} , (28)

i.e., Fx0(t) is maximum of all the radial sectional curvatures of M
m+1

in the geodesic ball Bt(x0). 
Here, i(M, x0) is the injectivity radius of M at x0. Since Fx0 is a nondecreasing function of t , 
it is continuous and differentiable almost everywhere. Let Gx0 : [0, i(M, x0)) → R+ be a weak 
solution to



G′′
x0

(t) + Fx0(t)Gx0(t) ≤ 0. (29)

Example 6. For the examples we presented earlier, we have:

(i) Fx0(t) = c := max{c1, c2} for M = Qp1
c1 ×Qp2

c2 , which gives Gx0(t) = Sc(t), for every x0 ∈
M ;

(ii) Fx0(t) = 1 for M = CP m+1, which gives Gx0(t) = S1(t), for every x0 ∈ M ;
(iii) Fx0(t) = 2ψ ′′(t)/ψ(t) = −ϕ′′(t)/ϕ(t) for M = R2 × S2 with the Schwarzschild metric, 

since ψ ′′ > 0, which gives Gx0(t) = ϕ(t). Here, x0 ∈ M is the pole, i.e., the point of M
where t = 0.

Notice that, in all these examples, the function Gx0 is nonnegative and nondecreasing.

For hypersurfaces of Einstein manifolds we have the following Poincaré type inequality:

Theorem 3.3. Let M
m+1

be an Einstein manifold, with Einstein constant λ. Assume there exists 
x0 ∈ M

m+1
such that Gx0 , defined by (29), is nonnegative and nondecreasing in a ball BR(x0), 

and let ρ(x) = ρ(x, x0), be the distance function of M
m+1

starting at x0. If M is a hypersurface 
of M

m+1
and � ⊂ M ∩ BR(x0) is a connected and open domain, with compact closure, such 

that � ∩ ∂M = ∅ and R < i(M, x0), then, for every class C1 functions u, f : M → R, with u
nonnegative and compactly supported in �, we have

∫
�

uS1G
′
x0

(ρ)e−f dμ ≤ C0

∫
�

[|P1(∇u − u∇f )| + |Scal − (m − 1)λ|u] e−f dμ, (30)

where C0 = 1
(m−1)

Gx0(R) and Gx0 is a solution to (29). In particular, if P1 : T M → T M is 
nonnegative definite, then

∫
�

uS1G
′
x0

(ρ)e−f dμ ≤ C1

∫
�

[
|∇u − u∇f |S1 +

∣∣∣∣ Scal

m − 1
− λ

∣∣∣∣u
]

e−f dμ, (31)

for C1 = (m − 1)C0.

Proof. Indeed, using Lemma 3.3 we have that divP1 = 0 on an Einstein manifold. By the defi-
nition of Gx0 , we have that

SectM(V , γ ′) ≤ −G′′
x0

(t)

Gx0(t)
,∀ V ∈ T M, with V ⊥ γ ′.

From the second item of Lemma 3.1 we have tr(AP1) = 2S2. Using (27) and Theorem 3.1, we 
obtain (30). Moreover, if P1 is nonnegative definite, then

|P1(U)| ≤ (trP1)|U | = (m − 1)S1|U |,

which gives (31), as desired. �



4. Rigidity results

In this section we state some rigidity results which are consequences of our Poincaré type 
inequality. Let

hc(t) =

⎧⎪⎨
⎪⎩

t, if c = 0;
1√−c

sinh(
√−ct), if c < 0;

1, if c > 0.

(32)

Notice that Sc(t) = hc(t) for c ≤ 0 and Sc(t) ≤ √
chc(t) for c > 0. Recall that BR denotes the 

geodesic ball of M with radius R and center at some point p0 ∈ M . If M is complete and we 
make R → ∞, the center p0 of the ball does not matter, and for this reason we omit the center 
of the ball in the notation of the results of this and the next sections.

The first result reads as follows:

Theorem 4.1. Let M be a complete (r + 1)-minimal hypersurface, 1 ≤ r ≤ m − 1, of a space 
form Qm+1

c of constant sectional curvature c ∈ R such that r is odd, or r is even and Hr ≥ 0. If

lim inf
R→∞

hc(R)

R

∫
BR\BR/2

Hrdμ = 0, (33)

then M is foliated by (m − r +1)-dimensional totally geodesic submanifolds of Qm+1
c . Moreover,

(i) if Qm+1
c = Rm+1 and M has nonnegative Ricci curvature, then M = Nr−1 ×Rm−r+1, where 

Nr−1 is a (r − 1)-dimensional Riemannian manifold;
(ii) if Qm+1

c = Sm+1+ (c), the open upper hemisphere, and M has Ricci curvature bounded from 
below by c, then M is totally geodesic.

Here, hc is defined by (32), Hr is the r-mean curvature defined by (10), and BR is the geodesic 
ball of M .

Proof. First notice that, by the first item in Remark 3, since Sr+1 ≡ 0, we have that Pr is semi-
definite. If r is odd, we can choose an orientation such that Pr is positive semi-definite. This 
implies 1

m−r
trPr = Sr ≥ 0. If r is even it does not happen, but the assumption that Sr ≥ 0

assures that Pr is positive semi-definite. This implies that

|Pr(U)| ≤ (trPr)|U | = (m − r)Sr |U |, U ∈ T M.

Taking � = BR in the inequality (13), we have that diamBR ≤ 2R, since the extrinsic distance 
is less than or equal to the intrinsic distance, and

∫
BR

uSrS ′
c(ρ)dμ ≤ Sc(R)

∫
BR

|∇u|Srdμ, (34)

where Sc is defined by (11). Taking a positive cut-off function u : M →R such that



⎧⎪⎨
⎪⎩

u ≡ 1 in BR/2;
|∇u| ≤ C/R in BR \BR/2;
u ≡ 0 in M \BR,

(35)

for some C > 0, we obtain∫
BR/2

SrS ′
c(ρ)dμ ≤

∫
BR

uSrS ′
c(ρ)dμ

≤ Sc(R)

∫
BR

Sr |∇u|dμ

≤ C
Sc(R)

R

∫
BR\BR/2

Srdμ

≤ C max{1,
√

c}hc(R)

R

∫
BR\BR/2

Srdμ.

Making R → ∞, we obtain

∫
M

SrS ′
c(ρ)dμ ≤ C max{1,

√
c} lim inf

R→∞
hc(R)

R

∫
BR\BR/2

Srdμ = 0,

which implies that Sr ≡ 0. Since Sr+1 ≡ 0 ≡ Sr , by Lemma 2.1, p. 252, of [43], we obtain 
that A has rank at most r − 1, i.e., M has index of relative nullity at least m − r + 1. By using 
Proposition 1.18, p. 24 of [32], we conclude that M is foliated by (m − r +1)-dimensional totally 
geodesic submanifolds of Qm+1

c . If Qm+1
c = Rm+1 and M has nonnegative Ricci curvature, then 

by using Hartman’s splitting theorem (see [32], Theorem 7.15, p. 196), M = Nr−1 ×Rm−r+1. If 
Qm+1

c = Sm+1+ (c) and the Ricci curvature of M is bounded from below by c, then by Corollary 
7.12, of [32], M is totally geodesic. �
Remark 7. If we replace the decay condition on Hr in the hypothesis of Theorem 4.1 by

lim inf
R→∞

hc(R)

R

∫
BR\BR/2

|A|rdμ = 0,

then we do not need assume that Hr ≥ 0 for r even. Indeed, in this case we can use (12) and the 
discussion in Remark 6, to estimate |Pr |.

Let M
m+1

be an Einstein manifold and M be a complete hypersurface of M
m+1

. Define, for 
each x0 ∈ M

m+1
,

Gx0(t) =
{

Gx0(t), if i(M,x0) = ∞ and M ∩ (M \ BR(x0)) �= ∅,∀R > 0;
1, if M ⊂ BR (x0) for some R0 > 0,
0



where Gx0 is the solution to (29). Thus, for Einstein manifolds, we have:

Theorem 4.2. Let M
m+1

be an Einstein manifold, with Einstein constant λ. Assume there exists 
x0 ∈ M

m+1
such that Gx0 , defined by (29), is nonnegative and nondecreasing. If M is a complete 

hypersurface of M
m+1

, with constant scalar curvature (m − 1)λ, such that

lim inf
R→∞

Gx0(R)

R

∫
BR\BR/2

Hdμ = 0, (36)

then M is totally geodesic, where H denotes the mean curvature of M and BR denotes the 
geodesic ball of M .

Proof. The eigenvalues of P1 are S1 − λi , where λi are the principal curvatures of M . Since 
S2 ≡ 0 and S1 ≥ 0, we have

S1 − λi ≤ S1 + |λi | ≤ S1 +
√

λ2
1 + · · · + λ2

m = S1 + |A| = 2S1,

i.e., |P1| ≤ 2S1. On the other hand, by the definitions of Fx0 (see (28)) and Gx0 , we have

SectM(V , γ ′) ≤ −G′′
x0

(t)

Gx0(t)
,∀ V ∈ T M, with V ⊥ γ ′.

Following the same reasoning of the proof of Theorem 4.1, but applying Theorem 3.3, for the 
cut-off function (35), we have

∫
BR/2

S1G
′
x0

(ρ)dμ ≤ Gx0(R)

m − 1

∫
BR

|P1(∇u)|dμ

≤ 2mGx0(R)

m − 1

∫
BR

|∇u|Hμ

≤ 2m

m − 1

Gx0(R)

R

∫
BR\BR/2

Hdμ.

Taking R → ∞ and observing that Gx0(R) < Gx0(R0) < ∞ over M , if M ⊂ BR0(x0) for some 

R0 > 0, we conclude, by using the hypothesis (36), that S1 ≡ 0. This gives |A| =
√

S2
1 − 2S2 = 0, 

i.e., M is totally geodesic. �
Since space forms are particular cases of Einstein manifolds for λ = mc, we have

Corollary 4.1. If M is a complete hypersurface with constant scalar curvature m(m − 1)c in a 
space form Qm+1 of constant sectional curvature c ∈R, such that
c



lim inf
R→∞

hc(R)

R

∫
BR\BR/2

Hdμ = 0,

then M is totally geodesic, where hc is defined by (32), H is the mean curvature, and BR is the 
geodesic ball of M with radius R.

As a consequence of the proof of Theorem 4.1, we obtain:

Corollary 4.2. There is no complete (r + 1)-minimal hypersurface, 1 ≤ r ≤ m − 1, in a space 
form Qm+1

c of constant sectional curvature c ≤ 0, such that

(i) either r is odd, or r is even and Hr ≥ 0;
(ii) M is contained in a geodesic ball of Qm+1

c , and

(iii) lim inf
R→∞

1

R

∫
BR\BR/2

Hrdμ = 0.

Here, Hr is the r-mean curvature defined by (10), and BR denotes the geodesic ball of M with 
radius R.

Remark 8. We would like to point out that assumptions about the integral growth for Hr on balls 
are common in the literature; for example, see [36], [1] and references therein. More specifically, 
we notice that, in [1], Do Carmo, the first, and third authors, obtained a non-existence result 
for hypersurfaces in R4 with zero scalar curvature, Gauss-Kronecker curvature Hm bounded 
away from zero, and polynomial growth of the quantity 

∫
BR

H dμ. Furthermore, there are in 
the literature some splitting results for hypersurfaces with constant scalar curvature immersed 
in some space forms; see for example [22] and [8]. Finally, we see that our results combine 
some kind of decay of 

∫
BR\BR/2

Hr dμ with geometric constrains to produce results of rigidity 
or non-existence.

5. Rigidity of self-similar solutions to curvature flows

Let ψ : Mm → Rm+1 be hypersurface. The evolution of ψ(M) by the curvature is smooth a 
one-parameter family � : M × I → Rm+1 of immersions �t := �(·, t) : M →Rm+1 solving the 
initial value problem

{
∂�

∂t
(x, t) = (Sr+1(x, t))αη(x, t),

�(x,0) = ψ(x),
(37)

for α ∈ R −{0} and Sr+1 is defined by (9). The initial value problem (37) is also called a curvature 
flow. These flows have been studied by many authors in the last four decades, see, for example, 
[24], [57], [25], [58], [59], [10], [11], their citations, and references therein. We also quote the 
recent book [12] for an extensive introduction of these flows.

A homothetic solution to the flow (37) is a hypersurface satisfying the equation

Sα = δ〈ψ,η〉, (38)
r+1



for some nonzero real number δ. A hypersurface satisfying (38) evolves by dilations and con-
tractions via the flow. If δ > 0, then the hypersurface evolves by dilation and it is called a 
self-expander. If δ < 0, then the hypersurface evolves by contraction and its is called a self-
shrinker.

Remark 9. Homothetic solutions are examples of self-similar solutions, which are those solu-
tions which evolves by flow without changing their shapes. Other examples are the translating 
solitons, which evolves translating the initial hypersurface in a fixed direction and those which 
evolves by a rotation of Rm+1. For more details, see [12].

Homothetic solutions to curvature flows have received considerable attention in recent years, 
see, for example [50], [28], [35], [18], [38], [41], [26], [51], [4], and [5].

For homothetic solutions to the curvature flow (37) we can state:

Theorem 5.1. Let M be a complete homothetic solution to the curvature flow (37) in Rm+1, 
1 ≤ r ≤ m − 1, such that

(i) α = p/q , where p and q are odd integers;
(ii) or α > 0 and Sr+1 ≥ 0;

(iii) or α < 0 and Sr+1 > 0.

If δSr ≥ 0 and

lim inf
R→∞

∫
BR\BR/2

|A|rdμ = 0, (39)

then

(i) M is a hyperplane if α > 0;
(ii) there is no such hypersurface if α < 0.

Here, BR denotes the geodesic ball of M with radius R and |A| is the norm of the second 
fundamental form.

Proof. Using (8) and Remark 1, we have that

(m − r)

∫
�

uSrdμ =
∫
�

〈−X,Pr(∇u)〉dμ + (r + 1)

∫
�

u〈−X,η〉Sr+1dμ,

for X = ρ∇ρ. Since Sα = δ〈ψ, η〉 and ψ = X in Rm+1, we have
r+1



∫
�

u[(m − r)δSr + (r + 1)Sα+1
r+1 ]dμ = δ

∫
�

〈−ρ∇ρ,Pr(∇u)〉dμ

≤ |δ|diam�

2

∫
�

|Pr ||∇u|dμ

≤ (2m − 1)|δ|diam�

2

∫
�

|A|r |∇u|dμ,

since |Pr | ≤ (2m − 1)|A|r by Remark 6. Taking � = BR a geodesic ball of M with radius R, 
we have diamBR ≤ 2R, since the extrinsic distance is less than or equal to the intrinsic distance. 
Using the cut-off function defined in (35), we obtain

∫
BR/2

u[(m − r)δSr + (r + 1)Sα+1
r+1 ]dμ ≤ c(m, r)|δ|

∫
BR\BR/2

|A|rdμ.

Notice that, if α = 2a+1
2b+1 , a, b ∈Z, then

Sα+1
r+1 =

(
S

a+b+1
2b+1

r+1

)2

≥ 0

no matter the signal of Sr+1. Taking R → ∞ and using the hypothesis, we obtain

Sr ≡ Sr+1 ≡ 0 ≡ 〈ψ,η〉,

which implies that M is a hyperplane, since it is smooth, for α > 0, (see also [31]) and leads to a 
contradiction for α < 0, since Sα

r+1 is defined, in this case, only for Sr+1 > 0. �
Remark 10. The proof of the Theorem 5.1 holds in the general setting of a Riemannian man-

ifold M
m+1

with bounded sectional curvatures by G′′(t)/G(t). So, we consider hypersurfaces 
satisfying the equation

Sα
r+1 = δ〈G(ρ)∇ρ,η〉.

These surfaces have been object of research in recent years as self-similar solutions to curvature 
flows in ambient spaces other than Rm+1, see, for example, [7] and [29]. If

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

lim inf
R→∞

G(R)

R

∫
BR\BR/2

|A|rdμ = 0, if G is unbounded;

lim inf
R→∞

1

R

∫
BR\BR/2

|A|rdμ = 0, if G is bounded,

then M satisfies



Sr ≡ Sr+1 ≡ 0 ≡ 〈G(ρ)∇ρ,η〉, (40)

(assuming c �= 0). The classification of hypersurfaces satisfying (40) depends on the ambient 
space we are considering. In the space form Qm+1

c , for example, by using the results in [31] and 
(40), we can conclude that M is totally geodesic if α > 0 and that the hypersurface does not exist 
if α < 0.
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