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HOPF TYPE THEOREM FOR SELF-SHRINKERS

HILÁRIO ALENCAR, GREGÓRIO SILVA NETO & DETANG ZHOU

Dedicated to the memory of Manfredo do Carmo

Abstract. In this paper, we prove that a two-dimensional self-shrinker, homeomorphic to the
sphere, immersed in the three dimensional Euclidean space R3 is a round sphere, provided its
mean curvature and the norm of its position vector have an upper bound in terms of the norm
of its traceless second fundamental form. The example constructed by Drugan justifies that
the hypothesis on the second fundamental form is necessary. We can also prove the same kind
of rigidity results for surfaces with parallel weighted mean curvature vector in Rn with radial
weight. These results are applications of a new generalization of Cauchy’s Theorem in complex
analysis which concludes that a complex function is identically zero or its zeroes are isolated if
it satisfies some weak holomorphy.

1. Introduction

An immersion X : Σ → R3 of a two-dimensional surface Σ is called a self-shrinker for the
mean curvature flow if its mean curvature vector H satisfies the equation

H = −1

2
X⊥,

where X⊥ is the normal part of the position vector.
Self-shrinkers are the self-similar solutions of the mean curvature flow and many efforts were

made in the last decades in order to obtain examples of such surfaces and classify these surfaces
under certain geometrical restrictions. In particular, there is a problem to classify the sphere as
the only compact self-shrinker under some geometrical assumptions, following the same spirit
of the classical Hopf and Alexandrov results. In 1951, see [23] and [24], Hopf proved that the
only surfaces of R3, homeomorphic to the sphere, with constant mean curvature, are the round
spheres. In his turn, Alexandrov, see [3], proved that the only embedded hypersurfaces of Rn,
compact, without boundary, with constant mean curvature, are the round spheres. But the
theorems similar to the Hopf or the Alexandrov ones are not true for self-shrinkers. We know
some examples of self-shrinkers, homeomorphic to the sphere, which are not the round sphere,
and examples of compact, without boundary, embedded torus which are self-shrinkers, see for
both cases, the examples of Drugan, see [15], and of Drugan and Kleene, see [16].

In this paper, we prove that a two-dimensional self-shrinker, homeomorphic to the sphere,
immersed in the three dimensional Euclidean space R3 is a round sphere, provided its mean
curvature and the norm of its position vector have an upper bound in terms of the norm of its
traceless second fundamental form.
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The proof of our results is inspired by the Hopf’s work. Since this might be the first paper
to apply the Hopf’s work to self-shrinkers, let us mention briefly his proofs. Using his quadratic
differential he gave two proofs for his theorem.

In the first proof, one considers the second fundamental form II in isothermal parameters and
takes the (2, 0)-component of II, i.e., II(2,0) = (1/2)Pdz2. It can be shown that the complex
function P is holomorphic if and only if H is constant and that the zeroes of P are the umbilical
points of Σ. It is also seen that the quadratic form II(2,0) does not depend on the parameter z;
hence, it is globally defined on Σ. It is a known theorem on Riemann surfaces that if the genus
g of Σ is zero, any holomorphic quadratic form vanishes identically. Then P = 0, i.e., all points
of Σ are umbilics, and hence Σ is a standard sphere.

His second proof is based on the lines of curvature. The quadratic equation Im(Pdz2) = 0
determines two fields of directions (the principal directions), whose singularities are the zeroes
of P . Since P is holomorphic, if z0 is a zero of P , either P = 0 in a neighborhood V of z0 or

(1.1) P (z) = (z − z0)
khk(z), z ∈ V, k ≥ 1,

where hk is a function of z with hk(z0) ̸= 0, see for example [28], p. 208-209. It follows that z0
is an isolated singularity of the field of directions and its index is −k/2, and hence, negative.

Thus, either II(2,0) = 0 on Σ, and we have a standard sphere, or all singularities are isolated
and have negative index. Since g = 0, by the Poincaré index theorem, the sum of the indices
of all singularities for any field of directions is two (hence positive). This is a contradiction, so

II(2,0) = 0 on Σ. Notice that, in the second proof, the fact that P is holomorphic is only used
to show that the index of an isolated singularity of the field of directions is negative and that
either P = 0 or the zeroes of P are isolated.

In our first result, we will use a weak holomorphy to obtain the same conclusion (1.1). This
will be crucial to prove our classification theorems since the Hopf quadratic differential is not
necessarily holomorphic for self-shrinkers. The existence of a weak notion of holomorphy to
conclude (1.1) was noticed first, as we know, by Carleman in 1933, see [8], and was used later
by Hartman and Wintner [21] and [22], Chern [13], Eschenburg and Tribuzy [17] and [18], and
Alencar-do Carmo-Tribuzy [4]. We refer to Section 2 for more history.

Theorem 1.1. Let h : U ⊂ C → C be a complex function defined in an open set U of the
complex plane and z = z0 ∈ U be a zero of h. If there exists φ ∈ Lploc(U), p > 2, a non-negative
real function such that

(1.2)

∣∣∣∣∂h∂z̄
∣∣∣∣ ≤ φ(z)G(|h(z)|),

where G : [0,∞) → [0,∞) is a locally integrable function such that lim supt→0+ G(t)/t < ∞,
then either h = 0 in a neighborhood V ⊂ U of z0, or

h(z) = (z − z0)
khk(z), z ∈ V, k ≥ 1,

where hk(z) is a continuous function with hk(z0) ̸= 0.

Corollary 1.1. Let h : U ⊂ C → C be a complex function defined in an open set U of the
complex plane. If (1.2) holds, then on each connected components of U which contains a zero of
h, either h ≡ 0 or the zeroes of h are isolated.

Remark 1.1. The case when φ = 0 is equivalent to that h is holomorphic. The case when
G(t) = t and φ is continuous, Theorem 1.1 is the Main Lemma in [4] which implies Chern’s
Lemma in [13]. Theorem 1.1 also implies Lemma 2.3, p. 154, of [18]. There are many functions
satisfying the condition lim supt→0G(t)/t < ∞. In fact, if G is a continuous function such



3

that G(0) = 0, then lim supt→0G(t)/t = G′(0), if it exists. Moreover, if G is any convex
function with G(0) = 0, then G(t)/t ≤ G(1) for small 0 < t < 1, which implies that convex
functions also satisfy the condition. In particular, the functions G(t) = tα, α ≥ 1, satisfy the
condition. On the other hand, there are concave functions which satisfy this condition, for
example G(t) = sin t, 0 ≤ t ≤ π/2.

Remark 1.2. The Hopf quadratic differential has a beautiful generalisation by Abresch and
Rosenberg, see [1] and [2]. They showed the existence of a quadratic differential which is holo-
morphic for constant mean curvature surfaces in the three-dimensional simply connected homo-
geneous spaces with four dimensional isometry group, extending the well known Hopf’s theorem
to these spaces.

Applying Theorem 1.1, we prove the following rigidity result for self-shrinkers:

Theorem 1.2. Let X : Σ → R3 be an immersed self-shrinker homeomorphic to the sphere.
If there exists a non-negative locally Lp function φ : Σ → R, p > 2, and a locally integrable
function G : [0,∞) → [0,∞) satisfying lim supt→0G(t)/t <∞, such that

(1.3) (∥X∥2 − 4H2)H2 ≤ φ2G(∥Φ∥)2,

then X(Σ) is a round sphere of radius 2 and centered at the origin.
Here ∥Φ∥ denotes the matrix norm of Φ = A− (H/2)I, where A is the shape operator of the

second fundamental form of X, H is its non-normalized mean curvature, and I is the identity
operator of TΣ.

Remark 1.3. The hypothesis (1.3) of Theorem 1.2 is necessary. In fact, Drugan constructed in
[15] an example of an immersed rotational self-shrinker, homeomorphic to the sphere, which is
not the round sphere. In section 4 we prove that this example of self-shrinker does not satisfy
(1.3).

Remark 1.4. The hypothesis (1.3) of Theorem 1.2 has also a natural geometric interpretation,
as follows. We know that, for every surface of R3, H2 − 4K = ∥Φ∥2 ≥ 0, i.e.,

K ≤ 1

4
H2,

where K denotes the Gaussian curvature of Σ.We claim that hypothesis (1.3) gives the existence
of a function ψ : Σ → R such that

(1.4) K ≤ 1

4
(1− ψ2)H2.

Moreover, if the function G satisfies G(t) > 0 for every t ̸= 0 and lim supt→0G(t)/t ̸= 0, then
this function ψ can be chosen in such way that, for every ε > 0 arbitrarily small, we have

(1.5) ψ2 < ε.

In order to prove (1.4), notice that, by using (1.3),

(∥X∥2 − 4H2)H2 ≤ φ2G(∥Φ∥)2 = φ2G(∥Φ∥)2

∥Φ∥2
(H2 − 4K),

which implies, by a rearrangement of the terms,

K ≤ 1

4

[
1− 1

φ2

(
∥Φ∥

G(∥Φ∥)

)2

(∥X∥2 − 4H2)

]
H2.
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Inequality (1.4) follows by taking

(1.6) ψ =
1

φ

∥Φ∥
G(∥Φ∥)

√
∥X∥2 − 4H2.

Since the function G satisfies G(t) > 0 for every t ̸= 0 and lim supt→0G(t)/t ̸= 0, there exists

M := sup
Σ

∥Φ∥
G(∥Φ∥)

√
∥X∥2 − 4H2.

Therefore, given an arbitrary ε > 0, by choosing φ as a constant function large enough such
that φ > Mε−1/2, we obtain (1.5) from (1.6).

Theorem 1.2 motivates us to study the zeroes of the functions H2 and ∥X∥2 − 4H2 at the
zeroes of ∥Φ∥2.

Definition 1.1. Let z0 be a zero point of a function ψ. The lower order of the zero ζψ−(z0) is
defined as the biggest number a such that

lim inf
z→z0

|ψ(z)|
(dist(z, z0))a

> 0.

The upper order of the zero ζψ+(z0) is defined as the smallest number a such that

lim sup
z→z0

|ψ(z)|
(dist(z, z0))a

< +∞.

As a consequence of Theorem 1.2, we present the following result, which will be proven in the
section 3, p. 22.

Corollary 1.2. Let X : Σ → R3 be an immersed self-shrinker homeomorphic to the sphere. If
at each umbilical points, the lower order of ∥Φ∥2 minus the upper order of the function (∥X∥2−
4H2)H2 is less than 2, then X(Σ) is a round sphere of radius 2 and centered at the origin.

Remark 1.5. There are many other results of rigidity of the round spheres as the only compact
self-shrinkers. In dimension n, Huisken, see [25], proved that the sphere of radius

√
2n is the

only compact, mean convex, self-shrinker in the Euclidean space. Colding and Minicozzi [14]
proved that the sphere of radius

√
2n is also the only compact F -stable self-shrinker in the

Euclidean space. In their turn, Kleene and Moller, see [26], proved that the sphere of radius√
2n is the only rotationally symmetric, embedded self-shrinker in the Euclidean space which

is homeomorphic to the sphere. In [7], Cao and Li proved that complete n-dimensional self-
shrinkers in Rn+k, k ≥ 1, with polynomial volume growth, and such that ∥A∥2 ≤ 1

2 are spheres,

cylinders or hyperplanes. Here ∥A∥2 means the squared norm of the second fundamental form
of the self-shrinker in Rn+k. We can also cite the result of Brendle [6] who proved that the only
closed, embedded self-shrinkers in R3 with genus zero, are the round spheres.

Remark 1.6. Theorem 1.2 is a consequence of the more general result Theorem 3.1, p. 17,
which holds for parallel weighted mean curvature surfaces in R2+m, m ≥ 1, where the weight is
a radial function (i.e., which depends only on the distance of the point to the origin), see section
3 for the precise definitions. As consequences of this theorem, we prove rigidity results in the
same spirit of Theorem 1.2 for constant weighted mean curvature surfaces with the Gaussian
measure, also called λ-surfaces. These surfaces, which are characterized by the equation

λ = H +
1

2
⟨X,N⟩
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for each λ ∈ R, have been intensively studied in recent years, see for example, [27], [10], [5], [11],
and [20]. The simple examples are round spheres centered at origin and all the hyperplanes.
Observe that self-shrinkers are special cases of these surfaces, by taking λ = 0.

Here is the plan of the rest of the paper: the section 2 is dedicated to the proof of Theorem
1.1. In the section 3 we prove the results about self-shrinkers, constant weighted mean curvature
surfaces, and f -minimal surfaces. We conclude the paper analyzing the umbilical points of
rotational self-shrinkers, especially the Drugan’s example, to obtain counterexamples to the
conclusion of Theorem 1.2 when the hypothesis (1.3) is removed.

Acknowledgments. The authors dedicate this article in memory to their professor and
friend Manfredo do Carmo for his remarkable contributions to differential geometry and for his
essential influence on their academic and personal experiences.

2. Proof of Theorem 1.1

In this section we prove Theorem 1.1. We start with the history line of the weak notion of
holomorphy.

A well known property of holomorphic functions establishes that if z0 is a zero of a holomorphic
function h(z), then h = 0 in a neighborhood of z0 or there exists k > 0 such that

h(z) = (z − z0)
khk(z),

for some function hk such that hk(z0) ̸= 0, see for example [28], p. 208-209. This number k is
called the order of the zero. In particular, if h is not identically zero in a neighborhood of z0,
then z0 is isolated.

In 1933, Carleman [8] was the first to observe that this property holds for non-analytic smooth
functions which satisfies some first order partial differential equation. In fact, he proved that a
solution h : U ⊂ C → C of

∂h

∂z̄
= ah+ bh̄,

does not admits a zero of infinite order except if h = 0. Here bars mean complex conjugate
and a, b are continuous complex functions. Notice that, if a = b = 0, then h is holomorphic.
Using these ideas, Hartman and Wintner, see [21] and [22], and Chern, see [13], proved their
well known results on the classification of special Weingarten surfaces.

The proof of Theorem 1.1 follows the same lines. In order to simplify the notations, we will
assume z0 = 0 in the lemmas below and in the proof of the theorem. Denote also by Dc(z̃) ⊂ C
the disc of radius c > 0 and center z̃ ∈ C. In the the proof of Theorem 1.1, we will need the
following three technical lemmas.

Lemma 2.1. Let h : U ⊂ C → C be a locally integrable complex function defined in a open set
U of the complex plane. Assume there exists M := supDR(0) |h(z)/zk−1| for some k ≥ 1 and for

some R > 0. Then, for every q ∈ (1, 2) and for every ξ ∈ C\{0} we have∫
DR(0)

∣∣∣∣ h(z)

zk(z − ξ)

∣∣∣∣q |dz ∧ dz̄| ≤M qKq|ξ|2−2q,

where

Kq :=

∫
C

|dw ∧ dw̄|
|w(w − 1)|q

<∞.

In particular, if limz→0 h(z)/z
k−1 = 0, the same conclusion holds for a sufficiently small R > 0.
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Proof. By taking z = ξw and using the hypothesis, we have∫
DR(0)

|h(z)|q

|zk(z − ξ)|q
|dz ∧ dz̄| ≤M q

∫
DR(0)

1

|z(z − ξ)|q
|dz ∧ dz̄|

=M q|ξ|2−2q

∫
BR/|ξ|(0)

1

|w(w − 1)|q
|dw ∧ dw̄|

≤M q|ξ|2−2q

∫
C

1

|w(w − 1)|q
|dw ∧ dw̄|.

On the other hand, see Figure 1, by using polar coordinates w = ρeiθ,
(2.1)∫

C

1

|w(w − 1)|q
|dw ∧ dw̄| =

∫
C\D2(0)

1

|w(w − 1)|q
|dw ∧ dw̄|

+

∫
D2(0)\(Dε(0)∪Dε(1))

1

|w(w − 1)|q
|dw ∧ dw̄|

+

∫
Dε(0)

1

|w(w − 1)|q
|dw ∧ dw̄|+

∫
Dε(1)

1

|w(w − 1)|q
|dw ∧ dw̄|

=

∫ ∞

2

∫ 2π

0

dρdθ

ρq−1|ρeiθ − 1|q

+

∫
D2(0)\(Dε(0)∪Dε(1))

1

|w(w − 1)|q
|dw ∧ dw̄|

+

∫ ε

0

∫ 2π

0

dρdθ

ρq−1|ρeiθ − 1|q
+

∫ ε

0

∫ 2π

0

dρdθ

|ρeiθ + 1|qρq−1
,

where, in the last of the four integrals of (2.1), we used w = 1 + ρeiθ. Since |x± y| ≥ ||x| − |y||

Figure 1. Representation of the domains in (2.1)

and q ∈ (1, 2), we have∫ ∞

2

∫ 2π

0

dρdθ

ρq−1|ρeiθ − 1|q
≤ 1

2q−1

∫ ∞

2

∫ 2π

0

dρdθ

(ρ− 1)q
=

π

2q−2

∫ ∞

1

dρ

ρq
<∞,∫ ε

0

∫ 2π

0

dρdθ

ρq−1|ρeiθ − 1|q
≤
∫ ε

0

∫ 2π

0

dρdθ

ρq−1(1− ρ)q
≤ 2π

(1− ε)q

∫ ε

0

dρ

ρq−1
<∞,
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and ∫ ε

0

∫ 2π

0

dρdθ

|ρeiθ + 1|qρq−1
≤
∫ ε

0

∫ 2π

0

dρdθ

(1− ρ)qρq−1
≤ 2π

(1− ε)q

∫ ε

0

dρ

ρq−1
<∞.

Therefore,

Kq :=

∫
C

|dw ∧ dw̄|
|w(w − 1)|q

<∞

and thus ∫
DR(0)

|h(z)|q

|zk(z − ξ)|q
|dz ∧ dz̄| ≤M qKq|ξ|2−2q <∞

for every fixed ξ ∈ C\{0}. □

Lemma 2.2 (Cauchy-Pompeiu formula, adapted). Let h : DR(0) ⊂ C → C be a complex
function such that ∂h/∂z̄ exists and it is locally integrable. If limz→0 h(z)/z

k−1 = 0, then

(2.2) 2πih(ξ)ξ−k =

∫
∂DR(0)

h(z)

zk(z − ξ)
dz +

∫
DR(0)

1

zk(z − ξ)

∂h

∂z̄
dz ∧ dz̄,

where ξ ∈ C\{0} and ∂DR(0) = {z ∈ C; |z| = R} denotes the boundary of DR(0).

Proof. Define the 1-form

ϕ(z) =
h(z)

zk(z − ξ)
dz.

LetW = DR(0)\(Da(0)∪Da(ξ)) for some a > 0 sufficiently small, see Figure 2. Since 1/zk(z−ξ)
is holomorphic in W , then

dϕ =
∂ϕ

∂z̄
dz̄ ∧ dz = − 1

zk(z − ξ)

∂h

∂z̄
dz ∧ dz̄.

By using Stokes’ theorem, we have

(2.3)

∫
W
dϕ =

∫
∂W

ϕ =

∫
∂DR(0)

ϕ−
∫
∂Da(0)

ϕ−
∫
∂Da(ξ)

ϕ.

Figure 2. Representation of W
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Let us calculate the integrals of the right hand side of (2.3) and take a→ 0. Making z = aeiθ

in ∂Da(0), we obtain

lim
a→0

∫
∂Da(0)

ϕ = lim
a→0

∫ 2π

0

h(aeiθ)iaeiθ

akeikθ(aeiθ − ξ)
dθ = i lim

a→0

∫ 2π

0

h(aeiθ)

(aeiθ)k−1(aeiθ − ξ)
dθ = 0

since lima→0
h(aeiθ)

(aeiθ)k−1 = 0 by hypothesis. On the other hand, making z = ξ+ aeiθ in ∂Ba(ξ), we

have

lim
a→0

∫
∂Da(ξ)

ϕ = lim
a→0

∫ 2π

0

h(ξ + aeiθ)iaeiθ

(ξ + aeiθ)kaeiθ
dθ = i lim

a→0

∫ 2π

0

h(ξ + aeiθ)

(ξ + aeiθ)k
dθ = 2πih(ξ)ξ−k.

Thus, taking a→ 0 in (2.3) gives

−
∫
DR(0)

1

zk(z − ξ)

∂h

∂z̄
dz ∧ dz̄ =

∫
∂DR(0)

h(z)

zk(z − ξ)
dz − 2πih(ξ)ξ−k.

□

Lemma 2.3. Let h : U ⊂ C → C be a locally integrable complex function, where U is an open
neighborhood of 0. Let z0 ∈ C\{0} and, for ε > 0, Dε = DR(0)\(Dε(0)∪Dε(z0)). If there exists
M := supDR(0) |h(z)/zk−1| for some k ≥ 1 and for some R > 0 then, for every q ∈ (1, 2) and
for every ξ ∈ C,∫

Dε

[∫
DR(0)

∣∣∣∣ h(z)

zk(z − ξ)(ξ − z0)

∣∣∣∣q du ∧ dv

]
dx ∧ dy

≤ 2q+1π(2R)2−q

2− q

∫
DR(0)

∣∣∣∣ h(z)

zk(z − z0)

∣∣∣∣q du ∧ dv

and ∫
Dε

[∫
∂DR(0)

∣∣∣∣ h(z)

zk(z − z0)

∣∣∣∣q |dz|
]
dx ∧ dy
|ξ − z0|q

≤ 2q+1π(2R)2−q

2− q

∫
∂DR(0)

∣∣∣∣ h(z)

zk(z − z0)

∣∣∣∣q |dz|.
In particular, the same conclusion holds if limz→0 h(z)/z

k−1 = 0.

Proof. Since the convexity of the function g(x) = xq, q ∈ (1, 2), gives(
A+B

2

)q
≤ Aq +Bq

2
, for A,B > 0,

we have
1

(z − ξ)(ξ − z0)
=

1

z − z0

(
1

z − ξ
+

1

ξ − z0

)
.

This implies

(2.4)

1

|z − ξ|q|ξ − z0|q
≤
[

1

|z − z0|

(
1

|z − ξ|
+

1

|ξ − z0|

)]q
≤ 2q−1

|z − z0|q|z − ξ|q
+

2q−1

|z − z0|q|ξ − z0|q
.
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Also, by taking ξ = z0 + ρeiθ,

(2.5)

∫
DR(0)

dx ∧ dy
|ξ − z0|q

≤
∫
D2R(z0)

dx ∧ dy
|ξ − z0|q

=

∫ 2R

0

∫ 2π

0

dθdρ

ρq−1
=

2π(2R)2−q

2− q
<∞.

Since, by Lemma 2.1, ∫
DR(0)

∣∣∣∣ h(z)

zk(z − ξ)

∣∣∣∣q du ∧ dv <∞,

for each fixed ξ ̸= 0, by using (2.4), Fubini’s theorem over Dε = DR(0)\(Dε(z0) ∪Dε(0)), and
(2.5), we obtain

∫
Dε

[∫
DR(0)

∣∣∣∣ h(z)

zk(z − ξ)(ξ − z0)

∣∣∣∣q du ∧ dv

]
dx ∧ dy

≤ 2q−1

∫
Dε

[∫
DR(0)

∣∣∣∣ h(z)

zk(z − ξ)(z − z0)

∣∣∣∣q du ∧ dv

]
dx ∧ dy

+ 2q−1

∫
Dε

[∫
DR(0)

∣∣∣∣ h(z)

zk(z − z0)(ξ − z0)

∣∣∣∣q du ∧ dv

]
dx ∧ dy

= 2q−1

∫
DR(0)

∣∣∣∣ h(z)

zk(z − z0)

∣∣∣∣q [∫
Dε

dx ∧ dy
|ξ − z|q

]
du ∧ dv

+ 2q−1

∫
DR(0)

∣∣∣∣ h(z)

zk(z − z0)

∣∣∣∣q [∫
Dε

dx ∧ dy
|ξ − z0|q

]
du ∧ dv

≤ 2q+1π(2R)2−q

2− q

∫
DR(0)

∣∣∣∣ h(z)

zk(z − z0)

∣∣∣∣q du ∧ dv.

Analogously,

∫
Dε

[∫
∂DR(0)

∣∣∣∣ h(z)

zk(z − z0)

∣∣∣∣q |dz|
]
dx ∧ dy
|ξ − z0|q

≤ 2q+1π(2R)2−q

2− q

∫
∂DR(0)

∣∣∣∣ h(z)

zk(z − z0)

∣∣∣∣q |dz|.
□

Now we are ready to prove Theorem 1.1.

Proof of Theorem 1.1. The proof will be divided in four steps.
Step 1. If limz→0 h(z)/z

k−1 = 0 for some k ≥ 1, then h(z)/zk is bounded in DR(0) for R > 0
fixed, but sufficiently small.
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By using the Cauchy-Pompeiu formula (2.2), p. 7, the hypothesis, and the Hölder inequality,
we have

(2.6)

2π

∣∣∣∣h(ξ)ξk

∣∣∣∣ ≤ ∫
∂DR(0)

|h(z)||dz|
|zk(z − ξ)|

+

∫
DR(0)

1

|zk(z − ξ)|

∣∣∣∣∂h∂z̄
∣∣∣∣ |dz ∧ dz̄|

≤
∫
∂DR(0)

|h(z)||dz|
|zk(z − ξ)|

+

∫
DR(0)

φ(z)G(|h(z)|)
|zk(z − ξ)|

|dz ∧ dz̄|

≤
∫
∂DR(0)

|h(z)||dz|
|zk(z − ξ)|

+ sup
DR(0)

{
G(|h(z)|)
|h(z)|

}∫
DR(0)

φ(z)|h(z)|
|zk(z − ξ)|

|dz ∧ dz̄|

≤ (2πR)1/p

[∫
∂DR(0)

∣∣∣∣ h(z)

zk(z − ξ)

∣∣∣∣q |dz|
]1/q

+MR∥φ∥p,R

[∫
DR(0)

∣∣∣∣ h(z)

zk(z − ξ)

∣∣∣∣q |dz ∧ dz̄|
]1/q

,

where

(2.7) MR := sup
DR(0)

{
G(|h(z)|)
|h(z)|

}
<∞,

by hypothesis, and

∥φ∥p,R =

[∫
DR(0)

φ(z)p|dz ∧ dz̄|

]1/p

is the Lp norm of φ in DR(0). Notice that the second integral of the right hand side of (2.6) is
bounded for every fixed ξ ̸= 0 by Lemma 2.1, p. 5. By using(

A+B

2

)q
≤ Aq +Bq

2
, for A,B > 0, q ∈ (1, 2),

we obtain

(2.8)

(2π)q
∣∣∣∣h(ξ)ξk

∣∣∣∣q≤
(2πR)1/p

[∫
∂DR(0)

∣∣∣∣ h(z)

zk(z − ξ)

∣∣∣∣q|dz|
]1/q

+MR∥φ∥p,R

[∫
DR(0)

∣∣∣∣ h(z)

zk(z − ξ)

∣∣∣∣q|dz ∧ dz̄|
]1/q

q

≤ 2q−1(2πR)q−1

∫
∂DR(0)

∣∣∣∣ h(z)

zk(z − ξ)

∣∣∣∣q|dz|
+ 2q−1M q

R∥φ∥
q
p,R

∫
DR(0)

∣∣∣∣ h(z)

zk(z − ξ)

∣∣∣∣q|dz ∧ dz̄|.
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Multiplying inequality (2.8) by |ξ−z0|−q, z0 ∈ DR(0)\{0}, and integrating onDε = DR(0)\(Dε(z0)∪
Dε(0)) gives∫

Dε

∣∣∣∣ h(ξ)

ξk(ξ − z0)

∣∣∣∣q dx ∧ dy ≤ Rq−1

22−qπ

∫
Dε

[∫
∂DR(0)

∣∣∣∣ h(z)

zk(z − ξ)

∣∣∣∣q|dz|
]
dx ∧ dy
|ξ − z0|q

+

(
MR∥φ∥p,R

π

)q ∫
Dε

[∫
DR(0)

∣∣∣∣ h(z)

zk(z − ξ)

∣∣∣∣qdu ∧ dv

]
dx ∧ dy
|ξ − z0|q

,

where z = u+ iv, ξ = x+ iy, and |dz ∧ dz̄| = 2du ∧ dv. By using Lemma 2.3, p. 8, we obtain∫
Dε

∣∣∣∣ h(ξ)

ξk(ξ − z0)

∣∣∣∣q dx ∧ dy ≤ Rq−1

22−qπ
· 8πR

2−q

2− q

∫
∂DR(0)

∣∣∣∣ h(z)

zk(z − z0)

∣∣∣∣q |dz|
+
M q
R∥φ∥

q
p,R

πq
· 8πR

2−q

2− q

∫
DR(0)

∣∣∣∣ h(z)

zk(z − z0)

∣∣∣∣q du ∧ dv,

and thus the left hand side is bounded for every ε > 0. Taking ε→ 0, we have

(2.9)

(
1−

8M q
R∥φ∥

q
p,RR

2−q

πq−1(2− q)

)∫
DR(0)

∣∣∣∣ h(z)

zk(z − z0)

∣∣∣∣q du∧ dv ≤ 21+qR

2− q

∫
∂DR(0)

∣∣∣∣ h(z)

zk(z − z0)

∣∣∣∣q |dz|.
Since 2− q > 0 and MR∥φ∥p,R decreases as R→ 0, taking R > 0 sufficiently small, we get

1−
8MR∥φ∥qp,RR2−q

πq−1(2− q)
> 0.

By replacing (2.9) in (2.6), we obtain
(2.10)

2π

∣∣∣∣h(ξ)ξk

∣∣∣∣≤
(2πR)1/p+( 21+qπq−1M q

R∥φ∥
q
p,RR

πq−1(2− q)− 8M q
R∥φ∥

q
p,RR

2−q

)1/q
[∫

∂DR(0)

∣∣∣∣ h(z)

zk(z − ξ)

∣∣∣∣q |dz|
]1/q

.

Since ∫
∂DR(0)

∣∣∣∣ h(z)

zk(z − ξ)

∣∣∣∣q |dz| = ∫ 2π

0

|h(Reiθ)|q

Rkq−1|Reiθ − ξ|q
dθ

≤ 1

Rkq−1(R− |ξ|)q

∫ 2π

0
|h(Reiθ)|qdθ,

we conclude that h(ξ)ξ−k is bounded for ξ near zero.
Step 2. There exists limz→0 h(z)z

−k.
Define T1 : DR(0) → R by

T1(ξ) =

∫
DR(0)

1

zk(z − ξ)

∂h

∂z̄
dz ∧ dz̄

and T2 : DR(0) → R by

T2(ξ) =

∫
∂DR(0)

h(z)

zk(z − ξ)
dz.

Thus, by using the Cauchy-Pompeiu formula (2.2), p. 7, to prove that limξ→0 h(ξ)ξ
−k exists,

one only need to prove both limξ→0 T1(ξ) and limξ→0 T2(ξ) exist. In fact, by the step 1, there
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exists N = supDR(0) |h(z)z−k|. Therefore, using the hypothesis and (2.7), p. 10,

|T1(ξ2)− T1(ξ1)| =

∣∣∣∣∣
∫
DR(0)

∂h

∂z̄

1

zk

(
1

z − ξ2
− 1

z − ξ1

)
dz ∧ dz̄

∣∣∣∣∣
≤
∫
DR(0)

∣∣∣∣∂h∂z̄
∣∣∣∣ 1

|z|k

∣∣∣∣ 1

z − ξ2
− 1

z − ξ1

∣∣∣∣ |dz ∧ dz̄|
≤
∫
DR(0)

φ(z)
G(|h(z)|)
|h(z)|

∣∣∣∣h(z)zk

∣∣∣∣ ∣∣∣∣ ξ2 − ξ1
(z − ξ2)(z − ξ1)

∣∣∣∣ |dz ∧ dz̄|
≤MRN |ξ2 − ξ1|

∫
DR(0)

φ(z)

∣∣∣∣ 1

(z − ξ2)(z − ξ1)

∣∣∣∣ |dz ∧ dz̄|
≤MRN |ξ2 − ξ1|∥φ∥p,R

[∫
DR(0)

1

|z − ξ2|q|z − ξ1|q
|dz ∧ dz̄|

]1/q
.

Considering z − ξ1 = (ξ2 − ξ1)w we have

(2.11)

|T1(ξ2)− T1(ξ1)| ≤MRN∥φ∥p,R|ξ2 − ξ1|2/q−1

[∫
DR/|ξ2−ξ1|(ξ1)

∣∣∣∣ 1

w(w − 1)

∣∣∣∣q |dw ∧ dw̄|

]1/q

≤MRN∥φ∥p,R|ξ2 − ξ1|1−2/p

[∫
C

∣∣∣∣ 1

w(w − 1)

∣∣∣∣q |dw ∧ dw̄|
]1/q

.

Since the last integral in (2.11) is finite by the Lemma 2.1, p. 5, we obtain

|T1(ξ2)− T1(ξ1)| ≤ (MRN∥φ∥p,RK1/q
q )|ξ2 − ξ1|1−2/p.

Thus, by taking Cauchy sequences and using that p > 2, there exists limξ→0 T1(ξ). On the other
hand,

|T2(ξ2)− T2(ξ1)| ≤
∫
∂DR(0)

∣∣∣∣h(z)zk

∣∣∣∣ ∣∣∣∣ 1

z − ξ2
− 1

z − ξ1

∣∣∣∣ |dz|
=

|ξ2 − ξ1|
Rk−1

∫ 2π

0

|h(Reiθ)|
|Reiθ − ξ2||Reiθ − ξ2|

dθ

≤ |ξ2 − ξ1|
Rk−1(R− |ξ2|)(R− |ξ2|)

∫ 2π

0
|h(Reiθ)|dθ.

Therefore, by taking Cauchy sequences again, there exists limξ→0 T2(ξ). Since, by the Cauchy-
Pompeiu formula (2.2), p. 7,

2πih(ξ)ξ−k = T1(ξ) + T2(ξ),

there exists limξ→0 h(ξ)ξ
−k.

Step 3. If limz→0 h(z)/z
k = 0 for every k ∈ N, then h = 0 in some neighborhood of z = 0.

Suppose, by contradiction, there exists z0 in a neighborhood of 0, |z0| < R, such that h(z0) ̸= 0.
Taking the power q and integrating (2.10), p. 11, over ξ = x + iy, using Fubini’s theorem and
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(2.5), p. 9, we have

(2.12)

(2π)q
∫
DR(0)

∣∣∣∣h(ξ)ξk

∣∣∣∣q dx ∧ dy ≤ C1

∫
DR(0)

[∫
∂DR(0)

∣∣∣∣ h(z)

zk(z − ξ)

∣∣∣∣q |dz|
]
dx ∧ dy

≤ C1

∫
∂DR(0)

∣∣∣∣h(z)zk

∣∣∣∣q
[∫

DR(0)

dx ∧ dy
|ξ − z|q

]
|dz|

≤ 2π(2R)2−qC1

2− q

∫
∂DR(0)

∣∣∣∣h(z)zk

∣∣∣∣q |dz|.
Let

(2.13) D∗ =

{
z ∈ DR(0); |z| ≤ |z0| and |h(z)| ≥ |h(z0)|

2

}
,

see Figure 3.

Figure 3. Representation of the set D∗, see (2.13).

On the one hand,

(2.14) (2π)q
∫
DR(0)

∣∣∣∣h(ξ)ξk

∣∣∣∣q dx ∧ dy ≥
∣∣∣∣h(z0)zk0

∣∣∣∣q πq volD∗ =: a|z0|−qk.

On the other hand,

(2.15)
2π(2R)2−qC1

2− q

∫
∂DR(0)

∣∣∣∣h(z)zk

∣∣∣∣q |dz| = [π(2R)3−qC1

2− q

∫ 2π

0
|h(Reiθ)|qdθ

]
R−qk =: bR−qk.

Replacing both (2.14) and (2.15) in (2.12) gives a|z0|−qk ≤ bR−qk. Since |z0| < R, we have

0 ≤ lim sup
k→∞

a

b
≤ lim

k→∞

(
|z0|q

Rq

)k
= 0,

i.e., a = 0. But since a = |h(z0)|qπq volD∗, we conclude that |h(z0)| = 0, which is a contradiction.
Therefore h = 0 in a neighborhood of z = 0.

Step 4. Conclusion. If h is not identically zero in a neighborhood of z = 0 then, by Step
3, there exists k > 0 such that limk→0 h(z)z

−(k−1) = 0 and limk→0 h(z)z
−k = c ̸= 0 or
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limk→0 h(z)z
−k do not exists. But, by the Step 2, the second case cannot happen and thus

there exists c ∈ C such that

lim
z→0

h(z)

zk
= c ̸= 0.

This implies that
h(z)

zk
= c+R, with lim

z→0
R = 0,

i.e.,

h(z) = zk(c+R) =: zkhk(z) with hk(0) = c ̸= 0.

Therefore, we conclude the proof of the theorem. □

3. Proof of the ridigity theorems

Before proving our main theorems, we give a brief introduction to weighted geometry in Rn.
We refer, for example, [12] for a more detailed exposition. We call (Rn, ⟨·, ·⟩, e−f ) a weighted
Riemannian manifold if it has a weighted measure dVf = e−fdV, where f : Rn → R is a function
of class C2. Let X : Σ → Rn be an immersion of a surface Σ. Consider Σ with the weighted
measure

dΣf = e−fdΣ,

and the induced metric ⟨·, ·⟩.
The first variation of the weighted volume Vf (Σ) =

∫
Σ e

−fdΣ is given by

d

dt
Vf (Σt)

∣∣∣∣
t=0

= −
∫
Σ
⟨T⊥,Hf ⟩e−fdΣ,

where T is a compactly supported variational vector field on Σ and

(3.1) Hf = H+ (∇f)⊥

is the weighted mean curvature vector of Σ in Rn. Here (∇f)⊥ denotes the part of the gradient
∇f of f in Rn normal to Σ and H denotes the non-normalized mean curvature vector of Σ in
Rn, i.e., the trace of the operator

B(Z,W ) = ∇ZW −∇Σ
ZW,

where ∇ and ∇Σ denote the connection of Rn and Σ, respectively.
We say that a surface Σ has parallel weighted mean curvature, if Hf is parallel in the normal

bundle, i.e., ∇⊥Hf = 0. In particular, if Hf = 0, we say that Σ is f -minimal.

In the case that f(X) = ∥X∥2/4, we call the weighted manifold (Rn, ⟨·, ·⟩, e−∥X∥2/4) the
Gaussian space. Notice that self-shrinkers are f -minimal surfaces in the Gaussian space.

If the codimension is one, the parallel weighted mean curvature surfaces in the Gaussian
space are called λ-surfaces. By using (3.1), we can see that λ-surfaces are characterized by the
equation

λ = H +
1

2
⟨X,N⟩,

where λ ∈ R, N is the unit normal vector field of the immersion, and H is its mean curvature,
i.e., H = HN. Observe that self-shrinkers of R3 are also λ-surfaces for λ = 0.

For each point p ∈ Σ we can take isothermal parameters u and v in a neighborhood of p, i.e.,

ds2 = α(u, v)(du2 + dv2),
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where ds2 is the metric of Σ and α(u, v) is a positive smooth function on Σ. Complexifying the
parameters by taking z = u+ iv, we can identify Σ with a subset of C. In this case, we have

⟨Xz, Xz̄⟩ =
α(z)

2
and ds2 = α(z)|dz|2.

The immersion X satisfies the equations

(3.2)


∇XzXz =

αz
α
Xz +B(Xz, Xz),

∇Xz̄Xz =
α

4
H,

∇Xz̄Xz̄ =
αz̄
α
Xz̄ +B(Xz̄, Xz̄),

and, for any ν ∈ TΣ⊥,

(3.3)


∇Xzν = −1

2
⟨H, ν⟩Xz −

2

α
⟨B(Xz, Xz), ν⟩Xz̄ +∇⊥

Xz
ν

∇Xz̄ν = − 2

α
⟨B(Xz̄, Xz̄), ν⟩Xz −

1

2
⟨H, ν⟩Xz̄ +∇⊥

Xz̄
ν,

where ∇⊥ is the connection of the normal bundle TΣ⊥.
Let us denote by

P νdz2 = ⟨B(Xz, Xz), ν⟩dz2

the (2, 0)-part of the second fundamental form of Σ in Rn relative to the normal ν ∈ TΣ⊥. This
quadratic form is also called the Hopf quadratic differential.

Since

(3.4)

P ν = ⟨∇XzXz, ν⟩ =
1

4
⟨∇Xu−iXvXu − iXv, ν⟩

=
1

4
[⟨∇XuXu, ν⟩ − ⟨∇XvXv, ν⟩ − i(⟨∇XuXv, ν⟩+ ⟨∇XvXu, ν⟩)]

=
1

4
[IIν(Xu, Xu)− IIν(Xv, Xv)− 2iIIν(Xu, Xv)],

where IIν is the second fundamental form of Σ in Rn relative to ν ∈ TΣ⊥, we have P ν = 0 if
and only if IIν is umbilical.

The next result will be an important tool to the proof of the main results.

Proposition 3.1. Let Σ be a Riemann surface and P νdz2 = ⟨∇XzXz, ν⟩dz2 be the Hopf differ-
ential, relative to ν ∈ TΣ⊥, of an immersion X : (Σ, α(z)|dz|2) → Rn. Define

Qνdz2 = e−
1
2
fP νdz2.

If ν is parallel at the normal bundle, i.e., ∇⊥ν = 0, then

Qνz̄ =
α

4
e−

1
2
f

[
⟨Hf , ν⟩z −Hessf(Xz, ν) +

1

2
⟨Hf −∇f, ν⟩⟨∇f,Xz⟩

]
,

where Hessf is the hessian of f.

Proof. First let us prove that, for ∇⊥ν = 0, we have

P νz̄ =
α

4
⟨H, ν⟩z.
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In fact, by using (3.2) and (3.3),

P νz̄ =
∂

∂z̄
⟨∇XzXz, ν⟩ = ⟨∇Xz̄∇XzXz, ν⟩+ ⟨∇XzXz,∇Xz̄ν⟩

= ⟨R(Xz, Xz̄)Xz, ν⟩+ ⟨∇Xz∇Xz̄Xz, ν⟩+ ⟨∇XzXz,∇Xz̄ν⟩

=
∂

∂z
(⟨∇Xz̄Xz, ν⟩)− ⟨∇Xz̄Xz,∇Xzν⟩+ ⟨∇XzXz,∇Xz̄ν⟩

=
∂

∂z

(α
4
⟨H, ν⟩

)
−
〈
α

4
H,−1

2
⟨H, ν⟩Xz −

2P ν

α
Xz̄ +∇⊥

Xz
ν

〉
+

〈
αz
α
Xz +B(Xz, Xz),−

2P ν

α
Xz −

1

2
⟨H, ν⟩Xz̄ +∇⊥

Xz̄
ν

〉
=
α

4
[⟨H, ν⟩z − ⟨H,∇⊥

Xz
ν⟩] + ⟨B(Xz, Xz),∇⊥

Xz̄
ν⟩

=
α

4
⟨H, ν⟩z,

where R(Xz, Xz̄)Xz = 0 is the Euclidean curvature tensor and, in the last equality, we used that
∇⊥ν = 0. Since

Qνz̄ =
∂

∂z̄
(e−

1
2
fP ν) = −1

2
fz̄e

− 1
2
fP ν + e−

1
2
fP νz̄

= −P
ν

2
e−

1
2
f ⟨∇f,Xz̄⟩+

α

4
e−

1
2
f ⟨H, ν⟩z

and H = Hf − (∇f)⊥, we have

Qνz̄ = −P
ν

2
e−

1
2
f ⟨∇f,Xz̄⟩+

α

4
e−

1
2
f ⟨Hf − (∇f)⊥, ν⟩z

= −P
ν

2
e−

1
2
f ⟨∇f,Xz̄⟩+

α

4
e−

1
2
f [⟨Hf , ν⟩z − ⟨∇f, ν⟩z]

= −P
ν

2
e−

1
2
f ⟨∇f,Xz̄⟩+

α

4
e−

1
2
f [⟨Hf , ν⟩z − ⟨∇Xz∇f, ν⟩ − ⟨∇f,∇Xzν⟩]

= −P
ν

2
e−

1
2
f ⟨∇f,Xz̄⟩+

α

4
e−

1
2
f

[
⟨Hf , ν⟩z −Hessf(Xz, ν)−

〈
∇f,−1

2
⟨H, ν⟩Xz −

2P ν

α
Xz̄

〉]
=
α

4
e−

1
2
f

[
⟨Hf , ν⟩z −Hessf(Xz, ν) +

1

2
⟨H, ν⟩⟨∇f,Xz⟩

]
=
α

4
e−

1
2
f

[
⟨Hf , ν⟩z −Hessf(Xz, ν) +

1

2
⟨Hf −∇f, ν⟩⟨∇f,Xz⟩

]
,

where, in the fourth equality, we used again (3.3) and ∇⊥ν = 0. □

We will also need the following result which proof can be found essentially in Yau [30] (see
Theorem 1, p. 351-352) and Chen-Yano [9] (see Theorem 3.3, p. 472-473). For the conclusion
when ν = H/∥H∥ we use Theorem 2, p. 117, of the work of Ferus [19].

Lemma 3.1. Let X : Σ → R2+m, m ≥ 1, be an immersion of surface homeomorphic to the
sphere. If there exists a normal vector field ν ∈ TΣ⊥ such the that ∇⊥ν ≡ 0 and Aν = µI
everywhere in Σ, where Aν is the shape operator of the second fundamental form of X relative
to ν, then µ is constant and

i) X(Σ) is contained in a round hypersphere of R2+m, if µ ̸= 0;
ii) or X(Σ) is contained in a hyperplane of R2+m, if µ = 0.



17

Moreover, if the mean curvature vector H ̸= 0 and ν = H/∥H∥, then X has parallel mean
curvature and X(Σ) is a minimal surface of a hypersphere of R2+m.

Proof. Since ∇⊥ν ≡ 0, we have

∇Uν = ∇⊥
Uν +Aν(U) = µU,

for every U ∈ TΣ. Taking the covariant derivative, we obtain

(3.5) ∇V∇Uν = ∇V (µU) = V (µ)U + µ∇V U.

for every V ∈ TΣ. On the other hand, in R2+m,

(3.6)

∇V∇Uν = ∇U∇V ν +∇[V,U ]ν

= ∇U (µV ) + µ[V,U ]

= U(µ)V + µ∇UV + µ∇V U − µ∇UV

= U(µ)V + µ∇V U.

Comparing (3.5) and (3.5), we obtain

V (µ)U = U(µ)V.

Since U and V can be taken linearly independent, we conclude that U(µ) = 0 for every U ∈ TΣ,
i.e., µ is constant. If µ = 0, then ∇Uν ≡ 0. This implies

U⟨X, ν⟩ = ⟨∇UX, ν⟩+ ⟨X,∇Uν⟩ = ⟨U, ν⟩ = 0,

i.e., ⟨X, ν⟩ is constant and X(Σ) lies in a hyperplane with normal ν. On the other hand, if µ ̸= 0,
then Y = X − 1

µν satisfies

∇UY = ∇UX − 1

µ
∇Uν = U − 1

µ
(µU) = 0,

which implies that Y is a constant vector x0, i.e., ∥X − x0∥2 = 1/µ2 and X(Σ) lies in a
hypersphere S1+m(x0, 1/µ) of R2+m with center x0 and radius 1/µ.

Now, assume H ̸= 0 and ν = H/∥H∥. Let {ν, η2, . . . , ηm} be an orthornormal frame of TΣ⊥.
We have

H = (traceAν)ν +
m∑
i=2

(traceAηi)ηi.

This implies that traceAηi ≡ 0, i = 2, . . . ,m. Since traceAν = 2µ, which is constant, we have
that H = 2µν is parallel, i.e., X has parallel mean curvature vector. The conclusion then comes
from Theorem 2, p.117 of [19], which states that if a surface, homeomorphic to the sphere,
is immersed in some Euclidean space, with parallel nonzero mean curvature vector, then X
immerses Σ as a minimal submanifold of some Euclidean hypersphere. □

Now, we are ready to state and prove the main theorem of this section. This theorem is a
rigidity result for parallel weighted mean curvature Hf surfaces in the Euclidean space with
arbitrary codimension and radial weight f(X) = F (∥X∥2), where F : R → R is a function of
class C2. Since the codimension can be arbitrary large, we assume that X(Σ) does not lie in any
proper affine subspace of the Euclidean space.

Theorem 3.1. Let X : Σ → R2+m, m ≥ 1, be an immersion of a surface homeomorphic to the
sphere. Assume that all the following assertions holds:

i) X has parallel weighted mean curvature Hf , i.e., ∇⊥Hf = 0, for a radial weight f(X) =
F (∥X∥2), where F : R → R is a function of class C2.

ii) There exists a unitary normal vector field ν ∈ TΣ⊥ such that ∇⊥ν = 0.
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iii) There exists a non-negative locally Lp function φ : Σ → R, p > 2, and a locally integrable
function G : [0,∞) → [0,∞) satisfying lim supt→0G(t)/t <∞, such that

(3.7)
∣∣F ′(∥X∥2)⟨Hf , ν⟩ − 2

[
2F ′′(∥X∥2) + (F ′(∥X∥2))2

]
⟨X, ν⟩

∣∣ ∥X⊤∥ ≤ φG(∥Φν∥).

Then X(Σ) is contained in a round hypersphere of R2+m. Moreover, if H ̸= 0 and ν = H/∥H∥,
then X(Σ) is a minimal surface of a round hypersphere of R2+m or a round sphere in R2+m.

Here X⊤ denotes the component of X tangent to TΣ, ∥Φν∥ denotes the matrix norm of
Φν = Aν − (traceAν/2)I, where Aν is the shape operator of the second fundamental form of X
relative to ν, traceAν is its trace, and I : TΣ → TΣ is the identity operator.

Proof. First, notice that, since e1 = (1/
√
α)Xu and e2 = (1/

√
α)Xv forms an orthonormal frame

for TΣ, denoting by hνij = IIν(ei, ej), by using (3.4), p. 15, we have

∥Φν∥2 = (hν11 − (traceIIν/2))2 + (hν22 − (traceIIν/2))2 + 2(hν12)
2

= 2

(
hν11 − hν22

2

)2

+ 2(hν12)
2

=
1

2

[
(hν11 − hν22)

2 + 4(hν12)
2
]

=
1

2α2

[
(IIν(Xu, Xu)− IIν(Xv, Xv))

2 + 4IIν(Xu, Xv)
2
]

=
8

α2
|P ν |2.

This gives

|Qν | = e−
1
2
F (∥X∥2)|P ν | = α

2
√
2
e−

1
2
F (∥X∥2)∥Φν∥.

On the other hand,

∇f = 2F ′(∥X∥2)X and
∂2f

∂xi∂xj
= 4F ′′(∥X∥2)xixj + 2F ′(∥X∥2)δij ,

where δij = 1, if i = j, and δij = 0, if i ̸= j. By using Proposition 3.1, p. 15, we have

Qνz̄ =
α

4
e−

1
2
F (∥X∥2)[−4F ′′(∥X∥2)⟨X,Xz⟩⟨X, ν⟩+ (⟨Hf , ν⟩ − 2F ′(∥X∥2)⟨X, ν⟩)F ′(∥X∥2)⟨X,Xz⟩]

=
α

4
e−

1
2
F (∥X∥2)[F ′(∥X∥2)⟨Hf , ν⟩ − 2(2F ′′(∥X∥2) + (F ′(∥X∥2))2)⟨X, ν⟩]⟨X,Xz⟩,

provided ∇⊥Hf = 0 and ∇⊥ν = 0 imply that ⟨Hf , ν⟩ is constant. Since

X =
2

α
⟨X,Xz̄⟩Xz +

2

α
⟨X,Xz⟩Xz̄ +X⊥,

where X⊥ is the part of X normal to Σ, and |⟨X,Xz⟩| = 1
2 |⟨X,Xu⟩ − i⟨X,Xv⟩| = |⟨X,Xz̄⟩|, we

have

∥X⊤∥ =
2√
α

√
|⟨X,Xz⟩||⟨X,Xz̄⟩| =

2√
α
|⟨X,Xz⟩|.
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Thus, by using hypothesis (3.7), we obtain

|Qνz̄ | ≤
α

4
e−

1
2
F (∥X∥2) ∣∣F ′(∥X∥2)⟨Hf , ν⟩ − 2

[
2F ′′(∥X∥2) + (F ′(∥X∥2))2

]
⟨X, ν⟩

∣∣ |⟨X,Xz⟩|

≤ α3/2

8
e−

1
2
F (∥X∥2) ∣∣F ′(∥X∥2)⟨Hf , ν⟩ − 2

[
2F ′′(∥X∥2) + (F ′(∥X∥2))2

]
⟨X, ν⟩

∣∣ ∥X⊤∥

≤ α3/2

8
e−

1
2
F (∥X∥2)φG(∥Φν∥)

≤ α3/2

8
e−

1
2
F (∥X∥2)φG

(
2
√
2

α
e

1
2
F (∥X∥2)|Qν |

)
.

Define

h(z) = 2
√
2α−1e

1
2
F (∥X∥2)Qν = 2

√
2α−1P ν .

We have∣∣∣∣∂h∂z̄
∣∣∣∣ ≤ ∣∣∣∣ ∂∂z̄ (2√2α−1e

1
2
F (∥X∥2)

)∣∣∣∣ |Qν |+ 2
√
2α−1e

1
2
F (∥X∥2)|Qνz̄ |

≤
∣∣∣∣ ∂∂z̄ (2√2α−1e

1
2
F (∥X∥2)

)∣∣∣∣ |Qν |+√α

8
φG(|h(z)|)

=

∣∣∣−αz̄α−2e
1
2
F (∥X∥2) + α−1 1

2F
′(∥X∥2)(∥X∥2)z̄e

1
2
F (∥X∥2)

∣∣∣
α−1e

1
2
F (∥X∥2)

|h(z)|+
√
α

8
φG(|h(z)|)

≤
[
|αz̄|α−1 +

√
α

2
F ′(∥X∥2)∥X⊤∥+

√
α

8
φ

]
G̃(|h(z)|),

where G̃(t) = max{t, G(t)}. Since

|αz̄|α−1 +

√
α

2
F ′(∥X∥2)∥X⊤∥+

√
α

8
φ ∈ Lploc, p > 2,

and

lim sup
t→0

G̃(t)

t
= max

{
1, lim sup

t→0

G(t)

t

}
<∞,

we are under the conditions of Theorem 1.1, p. 2. Thus either h(z), and thus P ν , is identically
zero in a neighborhood V of a zero z0 or this zero is isolated and the index of a direction field
determined by Im[P νdz2] = 0 is −k/2, hence negative. If, for some coordinate neighborhood V
of zero, P ν = 0, this holds for the whole Σ. Otherwise, the zeroes on the boundary of V will
contradict to Theorem 1.1. So if P ν is not identically zero, all zeroes, if any, are isolated and
have negative indices. This implies that the sum of all indexes of the isolated zeroes are negative
(if there are zeroes) or zero (if there are no zeroes). Since Σ has genus zero, by the Poincaré
index theorem the sum of the indices of the singularities of any field of directions is 2 (hence
positive). This contradiction shows that P ν is identically zero. This implies that Aν = µI,
i.e., ν is a umbilical normal direction of X. By using Lemma 3.1, since X(Σ) does not lie in
a hyperplane, we conclude that µ ̸= 0 and X(Σ) lies in a hypersphere of R2+m. Moreover, if
H ̸= 0 and ν = H/∥H∥, by the same Lemma, X(Σ) is a minimal surfaces of a hypersphere of
R2+m. □

In the case when Σ is f -minimal, i.e., Hf = 0, and the weight f(X) = F (∥X∥2) satisfies
F ′(t) ̸= 0 and 2F ′′(t) + (F ′(t))2 ̸= 0, for every t ∈ R, t ≥ 0, the next result follows from
Theorem 3.1.
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Corollary 3.1. Let X : Σ → R2+m, m ≥ 1, be an immersion of a surface homeomorphic to the
sphere. Assume that all the following assertions holds:

i) X is f -minimal, i.e., Hf = 0, for a radial weight f(X) = F (∥X∥2), where F : R → R
is a function of class C2 such that F ′(t) ̸= 0 and 2F ′′(t) + (F ′(t))2 ̸= 0, for every
t ∈ R, t ≥ 0.

ii) There exists an unitary normal vector field ν ∈ TΣ⊥ such that ∇⊥ν = 0.
iii) There exists a non-negative locally Lp function φ : Σ → R, p > 2, and a locally integrable

function G : [0,∞) → [0,∞) satisfying lim supt→0G(t)/t <∞, such that

(3.8)

(
∥X∥2 −

(
∥H∥

2F ′(∥X∥2)

)2
)(

|⟨H, ν⟩|
2F ′(∥X∥2)

)2

≤ φ2G(∥Φν∥)2.

Then X(Σ) is contained in a round hypersphere of R2+m of radius R, where R is the solution
of the equation

F ′(R2)R2 = 1,

and centered at the origin. Moreover, if H ̸= 0 and ν = H/∥H∥, then X(Σ) is a minimal surface
of a round hypersphere of R2+m with the same properties.

Here ∥Φν∥ is the matrix norm of Φν = Aν − (traceAν/2)I, where Aν is the shape operator of
the second fundamental form of X relative to ν, traceAν is its trace, and I : TΣ → TΣ is the
identity operator.

Proof. By taking Hf = 0 in (3.7), we obtain

(3.9) |⟨X, ν⟩| ∥X⊤∥ ≤ φ

2F ′′(∥X∥2) + (F ′(∥X∥2))2
G(∥Φν∥).

Since, using (3.1),

0 = Hf = H+ 2F ′(∥X∥2)X⊥,

we have

⟨X, ν⟩ = − ⟨H, ν⟩
2F ′(∥X∥2)

and ∥X⊤∥2 = ∥X∥2 − ∥X⊥∥2 = ∥X∥2 −
(

∥H∥
2F ′(∥X∥2)

)2

.

Replacing these expressions in (3.9), considering φ/(2F ′′(∥X∥2) + (F ′(∥X∥2))2) in the place of
φ, and squaring the resultant inequality, we obtain that (3.7) becomes (3.8). The result then
follows from Theorem 3.1.

In order to determine the radius and the center of the sphere, consider HS the mean curvature

vector of Σ in S1+m(x0, R), where x0 is the center and R is the radius of the sphere, and ĨI the
second fundamental form of S1+m(x0, R) in R2+m. We have

H = HS +
2∑
i=1

ĨI(ei, ei) ⇒ ⟨H, ν⟩ = ⟨HS, ν⟩+
2

R
,

where {e1, e2} is an orthonormal frame of TΣ. Since HS ∈ TS1+m(x0, R), then ⟨HS, ν⟩ = 0, i.e.,

⟨H, ν⟩ = 2

R
.

By using H = −2F ′(∥X∥2)X⊥, we obtain

RF ′(∥X∥2)⟨X, ν⟩ = −1.

Since X(Σ) ⊂ S1+m(x0, R), we have X = x0 −Rν. This gives

(3.10) RF ′(∥X∥2)⟨X,x0 −X⟩ = −1.
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Taking the gradient ∇Σ of Σ in (3.10),

RF ′′(∥X∥2)⟨X,x0 −X⟩∇Σ(∥X∥2) + F ′(∥X∥2)(∇Σ⟨X,x0⟩ − ∇Σ(∥X∥2)) = 0

i.e.,

(3.11) 2RF ′′(∥X∥2)⟨X,x0 −X⟩X⊤ + F ′(∥X∥2)(x⊤0 − 2X⊤) = 0.

Since X⊤ = x⊤0 , by multiplying (3.11) by F ′(∥X∥2) we obtain[
2F ′′(∥X∥2)(RF ′(∥X∥2)⟨X,x0 −X⟩)− (F ′(∥X∥2))2

]
X⊤ = 0.

By using (3.10) again gives

−
[
2F ′′(∥X∥2) + (F ′(∥X∥2))2

]
X⊤ = 0.

The hypothesis 2F ′′(∥X∥2) + (F ′(∥X∥2))2 ̸= 0 thus implies that X⊤ = 0. Since ∇Σ(∥X∥2) =
2X⊤ = 0, we have that ∥X∥2 is constant, i.e., X is immersed in a sphere centered at the origin.
On the other hand, calculating the Laplacian ∆Σ of ∥X∥2 in Σ gives

0 =
1

2
∆Σ∥X∥2 = ⟨H, X⟩+ 2 = −2F ′(∥X∥2)∥X∥2 + 2,

i.e.,
F ′(∥X∥2)∥X∥2 = 1.

□

Since self-shrinkers are f -minimal surfaces for the weight f(X) = ∥X∥2
4 , applying Corollary

3.1 to F (t) = t/4, we obtain

Corollary 3.2. Let X : Σ → R2+m, m ≥ 1, be an immersed self-shrinker homeomorphic to the
sphere. Assume there exists an unitary normal vector field ν ∈ TΣ⊥ such that ∇⊥ν = 0. If there
exists a non-negative locally Lp function φ : Σ → R, p > 2, and a locally integrable function
G : [0,∞) → [0,∞) satisfying lim supt→0G(t)/t <∞, such that(

∥X∥2 − 4∥H∥2
)
|⟨H, ν⟩|2 ≤ φ2G(∥Φν∥)2,

then X(Σ) is contained in a round hypersphere of R2+m of radius 2 and centered at the origin.
Here ∥Φν∥ is the matrix norm of Φν = Aν − (traceAν/2)I, where Aν is the shape operator of

the second fundamental form of X relative to ν, traceAν is its trace, and I : TΣ → TΣ is the
identity operator.

Remark 3.1. In the particular case when H ̸= 0 and ν = H/∥H∥, then Corollary 3.2 is also a
consequence of the main theorem of Smoczyk, see [29]: A closed n-dimensional self-shrinker of
Rn+m is a minimal submanifold of the sphere Sn+m−1(

√
2n) if and only if H ̸= 0 and ∇⊥ν = 0,

where ν = H/∥H∥.

If we consider the case of codimension one in Corollary 3.2, then we obtain Theorem 1.2:

Corollary 3.3 (Theorem 1.2, p. 3). Let X : Σ → R3 be an immersed self-shrinker homeomor-
phic to the sphere. If there exists a non-negative locally Lp function φ : Σ → R, p > 2, and a
locally integrable function G : [0,∞) → [0,∞) satisfying lim supt→0G(t)/t <∞, such that

(∥X∥2 − 4H2)H2 ≤ φ2G(∥Φ∥)2,
then X(Σ) is a round sphere of radius 2 and centered at the origin.

Here ∥Φ∥ denotes the matrix norm of Φ = A− (H/2)I, where A is the shape operator of the
second fundamental form of X, H is its non-normalized mean curvature, and I is the identity
operator of TΣ.
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Now, we present a proof of Corollary 1.2, p. 4, as a consequence of Theorem 1.2, p. 3.

Corollary 3.4 (Corollary 1.2, p. 4). Let X : Σ → R3 be an immersed self-shrinker homeomor-
phic to the sphere. If at each umbilical points, the lower order of ∥Φ∥2 minus the upper order of
the function (∥X∥2 − 4H2)H2 is less than 2, then X(Σ) is a round sphere centered at the origin
and of radius 2.

Proof. Let z0 ∈ Σ be a umbilical point, a = ζ
(∥X∥2−4H2)H2

+ (z0) and b = ζ
∥Φ∥2
− (z0). By using

Definition 1.1, p. 4, and the hypothesis, we have

lim sup
z→z0

(∥X∥2 − 4H2)H2

(dist(z, z0))a
<∞

and

lim sup
z→z0

(dist(z, z0))
b

∥Φ∥2
=

(
lim inf
z→z0

∥Φ∥2

(dist(z, z0))b

)−1

<∞.

Since
(∥X∥2 − 4H2)H2

∥Φ∥2
=

(∥X∥2 − 4H2)H2

(dist(z, z0))a
· (dist(z, z0))

b

∥Φ∥2
· 1

(dist(z, z0))b−a
,

then
(∥X∥2 − 4H2)H2

∥Φ∥2
:= φ2, φ ∈ Lploc ⇔

1

(dist(z, z0))(b−a)/2
∈ Lploc, p > 2.

Note that
1

(dist(z, z0))β
∈ L1

loc ⇔ β < 2.

If b > a, since b − a < 2, we can choose 2 < p < 4
b−a such that (b − a)p < 2. If b < a, then

(b− a)p < 2 for every p > 0. Thus, by using the hypothesis, we have

(∥X∥2 − 4H2)H2

∥Φ∥2
:= φ2, for φ ∈ Lploc.

The result then follows from Theorem 1.2. □

For surfaces with parallel weighted mean curvature in the Gaussian space, we have

Corollary 3.5. Let X : Σ → (R2+m, ⟨·, ·⟩, e−∥X∥2/4), m ≥ 1, be an immersion of a surface
homeomorphic to the sphere into the Gaussian space. Assume that all the following assertions
holds:

i) X has parallel weighted mean curvature Hf , i.e., ∇⊥Hf = 0.

ii) There exists an unitary normal vector field ν ∈ TΣ⊥ such that ∇⊥ν = 0.
iii) There exists a non-negative locally Lp function φ : Σ → R, p > 2, and a locally integrable

function G : [0,∞) → [0,∞) satisfying lim supt→0G(t)/t <∞, such that

(3.12) (∥X∥2 − 4∥Hf −H∥2)⟨H, ν⟩2 ≤ φ2G(∥Φν∥)2,

Then X(Σ) is contained in a round hypersphere of R2+m.Moreover, if H ̸= 0 and ν = H/∥H∥,
then X(Σ) is a minimal surface of a round hypersphere of R2+m of radius√

⟨Hf , ν⟩2 + 4− ⟨Hf , ν⟩.

Here ∥Φν∥ is the matrix norm of Φν = Aν − (traceAν/2)I, where Aν is the shape operator of
the second fundamental form of X relative to ν, traceAν is its trace, and I : TΣ → TΣ is the
identity operator.
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Proof. By taking F (t) = t/4 in (3.7), we obtain

1

4

∣∣∣∣⟨Hf , ν⟩ −
1

2
⟨X, ν⟩

∣∣∣∣ ∥X⊤∥ ≤ φG(∥Φν∥),

i.e.,
1

4
|⟨H, ν⟩| ∥X⊤∥ ≤ φG(∥Φν∥).

Since
∥X⊤∥ = ∥X∥2 − ∥X⊥∥2 = ∥X∥2 − 4∥Hf −H∥,

then (3.12) becomes (3.7) and the result comes from Theorem 3.1.
In order to determine the radius of the sphere, consider HS the mean curvature vector of Σ

in S1+m(x0, R), where x0 is the center and R is the radius of the sphere, and ĨI the second
fundamental form of S1+m(x0, R) in R2+m. We have

H = HS +

2∑
i=1

ĨI(ei, ei) ⇒ ⟨H, ν⟩ = ⟨HS, ν⟩+
2

R

where {e1, e2} is an orthonormal frame of TΣ. Since HS ∈ TS1+m(x0, R), then ⟨HS, ν⟩ = 0, i.e.,

(3.13) ⟨H, ν⟩ = 2

R
.

Since H = Hf − 1
2X

⊥, we have

(3.14) ⟨X, ν⟩ = 2⟨Hf , ν⟩ − 2⟨H, ν⟩ = 2⟨Hf , ν⟩ −
4

R
.

On the other hand, X(Σ) ⊂ S1+m(x0, R) implies X = x0 −Rν. This gives ⟨X, ν⟩ = ⟨x0, ν⟩ −R,
i.e.,

(3.15) ⟨x0, ν⟩ = R+ 2

(
⟨Hf , ν⟩ −

2

R

)
.

Taking the gradient in (3.14) and using that ⟨Hf , ν⟩ is constant, we obtain

⟨X,Rν⟩ = ⟨X,x0⟩ − ∥X∥2

so that
0 = ∇⟨X,Rν⟩ = ∇⟨X,x0⟩ − ∇(∥X∥2) = x⊤0 − 2X⊤ = −X⊤.

Since ∇(∥X∥2) = 2X⊤ = 0, we deduce that ∥X∥2 is constant. Taking the Laplacian

0 =
1

2
∆∥X∥2 = ⟨H, X⟩+ 2

and using (3.13), we have

⟨x0,H⟩ = ⟨X +Rν,H⟩ = ⟨X,H⟩+R⟨ν,H⟩ = −2 +R · 2
R

= 0.

If ν = H
∥H∥ , then (3.15) becomes

0 = R+ 2

(
⟨Hf , ν⟩ −

2

R

)
,

which gives

R =
√
⟨Hf , ν⟩2 + 4− ⟨Hf , ν⟩.

□
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In particular, for λ-surfaces, we obtain

Corollary 3.6. Let X : Σ → R3 be a immersed λ-surface homeomorphic to the sphere. If there
exists a non-negative locally Lp function φ : Σ → R, p > 2, and a locally integrable function
G : [0,∞) → [0,∞) satisfying lim supt→0G(t)/t <∞, such that(

∥X∥2 − 4(λ−H)2
)
H2 ≤ φ2G(∥Φ∥)2,

then X(Σ) is a round sphere of radius
√
λ2 + 4− λ and center at the origin.

Here ∥Φ∥ denotes the matrix norm of Φ = A− (H/2)I, where A is the shape operator of the
second fundamental form of X, H is its non-normalized mean curvature, and I is the identity
operator of TΣ.

Remark 3.2. In the proof of Corollary 3.5, since the codimension can be m ≥ 2, we have that
the spheres ∥X∥2 = constant and S1+m(x0, R) could be different. In this case we will have

X(Σ) ⊂ S1+m(x0, R) ∩ S1+m(0, ∥X∥),
where this intersection is, by its turn, a m-dimensional sphere.

4. Umbilical points in rotational Self-shrinkers and the Drugan’s example

Our goal in this section is to show that the hypothesis (1.3) of Theorem 1.2 is necessary and
cannot be removed. For that, we will study what happens in a neighborhood of certain umbilical
point of a rotational self-shrinker, particularly the example given by Drugan in [15]. If a smooth
surface of revolution intersects the axis of rotation (perpendicularly), then the point in this
intersection is an umbilical point. We remark that, since Drugan’s example is homeomorphic to
the sphere, it has two of these umbilical points. In this section we show that, if Σ is a rotational
self-shrinker which is not a plane nor a sphere, then√

(∥X∥2 − 4H2)H2

∥Φ∥
̸∈ Lploc, ∀p > 2,

in a neighborhood of the umbilical point which intersects the rotation axis. By using this result,
we can conclude that Drugan’s self-shrinker is an example of self-shrinker homeomorphic to the
sphere which does not satisfy the hypothesis (1.3) of Theorem 1.2, proving that this hypothesis
is necessary (see Figure 4).

Let Σ be a smooth rotational self-shrinker. If the profile curve is written as a graph (x, γ(x)),
the self-shrinker equation becomes

(4.1)
γ′′(x)

1 + (γ′(x))2
=

(
x

2
− 1

x

)
γ′(x)− 1

2
γ(x).

Since the principal curvatures of a rotational surface with profile curve (x(t), y(t)) are given by

k1 =
−y′(t)

x(t)
√

(x′(t))2 + (y′(x))2
, k2 =

x′′(t)y′(t)− x′(t)y′′(t)

((x′(t))2 + (y′(t))2)3/2
,

we have

k1 =
−γ′(x)

x
√
1 + (γ′(x))2

and k2 =
−γ′′(x)

(1 + (γ′(x))2)3/2
.

This implies that, if the profile curve is a graph (x, γ(x)), a point of the rotational surface is
umbilical if and only if k1 = k2, i.e.,

γ′(x)

x
=

γ′′(x)

1 + (γ′(x))2
.
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Figure 4. Draft of the profile curve of the Drugan’s example. The surface is
obtained by rotating the profile curve around the vertical axis. The intersection
of the profile curve with the rotation axis gives two isolated umbilical points
which do not satisfy the hypothesis (1.3) of Theorem 1.2

Thus, a point (x, γ(x)) of a profile curve of a self-shrinker gives an umbilic point if and only if

γ′(x)

x
=

(
x

2
− 1

x

)
γ′(x)− 1

2
γ(x),

or, equivalently,
xγ(x) = (x2 − 4)γ′(x).

Define the function

(4.2) F (x) = xγ(x)− (x2 − 4)γ′(x).

A point (x, γ(x)) of a profile curve of a self-shrinker gives an umbilic point if and only if F (x) = 0.
Moreover,

(4.3)

∥Φ∥ =
1√
2
|k1 − k2| =

1√
2
√

1 + (γ′(x))2

∣∣∣∣−γ′(x)x
+

γ′′(x)

1 + (γ′(x))2

∣∣∣∣
=

1√
2
√

1 + (γ′(x))2

∣∣∣∣−γ′(x)x
+

(
x

2
− 1

x

)
γ′(x)− γ(x)

2

∣∣∣∣
=

1√
2
√

1 + (γ′(x))2

∣∣∣∣(x2 − 2

x

)
γ′(x)− γ(x)

2

∣∣∣∣
=

|(x2 − 4)γ′(x)− xγ(x)|
2
√
2x
√
1 + (γ′(x))2

.

On the other hand,

(4.4) − 2H = ⟨X,N⟩ = (x, γ(x)) · (γ′(x),−1)√
1 + (γ′(x))2

=
xγ′(x)− γ(x)√
1 + (γ′(x))2

and

(4.5) ∥X∥2 − 4H2 = ∥X∥2 − ⟨X,N⟩2 = (x+ γ(x)γ′(x))2

1 + (γ′(x))2
,



26 HILÁRIO ALENCAR, GREGÓRIO SILVA NETO & DETANG ZHOU

which implies √
(∥X∥2 − 4H2)H2

∥Φ∥
=

√
2x|x+ γ(x)γ′(x)||γ(x)− xγ′(x)|√
1 + (γ′(x))2|(x2 − 4)γ′(x)− xγ(x)|

.

For our purposes we will need the Taylor expansion of γ and F near zero.

Lemma 4.1. Let γ(x) be the solution of (4.1) with the initial conditions γ(0) = b and γ′(0) = 0.
Then, near x = 0, we have

γ(x) = b− b

8
x2 − b

256

(
3 +

b2

4

)
x4 +O(x5)

and

F (x) = − b

16

(
1 +

b2

4

)
x3 +O(x4),

where F (x) = xγ(x)− (x2 − 4)γ′(x), see (4.2).

Proof. Let

γ(x) = a0 + a1x+ a2x
2 + a3x

3 + a4x
4 +O(x5).

We have

γ′(x) = a1 + 2a2x+ 3a3x
2 + 4a4x

3 +O(x4)

and

γ′′(x) = 2a2 + 6a3x+ 12a4x
2 +O(x3).

Since γ(0) = b, γ′(0) = 0 and γ′′(0) = −b/4, we obtain a0 = b, a1 = 0, and a2 = −b/8, which
implies

γ(x) = b− b

8
x2 + a3x

3 + a4x
4 +O(x5).

In order to calculate a3 and a4 we will use equation (4.1). Notice that(
x

2
− 1

x

)
γ′(x) =

(
x

2
− 1

x

)(
− b
4
x+ 3a3x

2 + 4a4x
3 +O(x4)

)
=
b

4
− 3a3x−

(
b

8
+ 4a4

)
x2 +O(x3)

implies(
x

2
− 1

x

)
γ′(x)− 1

2
γ(x) =

b

4
− 3a3x−

(
b

8
+ 4a4

)
x2 +O(x3)− b

2
− b

16
x2 +O(x3)

= − b
4
− 3a3x−

(
3b

16
+ 4a4

)
x2 +O(x3).

Since

1 + (γ′(x))2 = 1 + x2
(
− b
4
+ 3a3x+ 4a4x

2 +O(x3)

)2

= 1 +
b2

16
x2 +O(x3),
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we have

(1 + (γ′(x))2)

[(
x

2
− 1

x

)
γ′(x)− 1

2
γ(x)

]
=

(
1 +

b2

16
x2 +O(x3)

)(
− b
4
− 3a3x−

(
3b

16
+ 4a4

)
x2 +O(x3)

)
= − b

4
− 3a3x−

(
3b

16
+
b3

64
+ 4a4

)
x2 +O(x3).

By using (4.1), p. 24,

− b
4
+ 6a3x+ 12a4x

2 +O(x3) = − b
4
− 3a3x−

(
3b

16
+
b3

64
+ 4a4

)
x2 +O(x3),

which implies

a3 = 0 and a4 = − b

256

(
3 +

b2

4

)
.

Thus, the Taylor expansion of γ near zero is

γ(x) = b− b

8
x2 − b

256

(
3 +

b2

4

)
x4 +O(x5).

Therefore
F (x) = xγ(x)− (x2 − 4)γ′(x)

= x

(
b− b

8
x2 − b

256

(
3 +

b2

4

)
x4 +O(x5)

)
− (x2 − 4)

(
− b
4
x− b

64

(
3 +

b2

4

)
x3 +O(x4)

)
= − b

16

(
1 +

b2

4

)
x3 +O(x4).

□

Now we present the first main result of this section.

Proposition 4.1. Let Σ be a rotational self-shrinker which is not a plane or a sphere. If z0 ∈ Σ
is a umbilical point, then

i) H(z0) ̸= 0.
ii) ∥X(z0)∥ = 2|H(z0)| if and only if z0 is in the rotation axis. Moreover, in this case√

(∥X∥2 − 4H2)H2

∥Φ∥
̸∈ Lploc, ∀ p > 2.

Proof. The proof will be based on the fact that any smooth curve in R2 is a union of graphs
y = γ(x) defined on intervals of the form (−∞, c1], [c1, c2] or [c2,∞), where γ has a vertical
tangent line in c1 and c2, and vertical line segments.

Let (a, γ(a)), a > 0, be the point in the profile curve correspondent to z0. Since z0 is umbilic,
we have

(4.6) (a2 − 4)γ′(a) = aγ(a).

Thus, if a ̸= 2, then

(4.7) γ′(a) =
aγ(a)

a2 − 4
.
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i) If, a ̸= 2, then using (4.4), p. 25, we have

|H(z0)| = 0 ⇔ |γ(a)− aγ′(a)| =
∣∣∣∣γ(a)− a2γ(a)

a2 − 4

∣∣∣∣ = 4|γ(a)|
|a2 − 4|

= 0 ⇔ γ(a) = 0.

This implies that γ′(a) = 0 and thus γ(x) = 0 for every x in a neighborhood of a, by the
uniqueness theorem for ordinary differential equations, i.e., Σ is (a piece of) a plane. If a = 2,
then, by (4.6), we have γ(2) = 0. By using (4.4), we have

|H(z0)| =
|γ′(2)|√

1 + (γ′(2))2
= 0 ⇔ γ′(2) = 0.

But γ(2) = γ′(2) = 0 gives again that γ(x) = 0, i.e., Σ is (a piece of) a plane. Therefore, if Σ is
not (a piece of) a plane, we have that H(z0) ̸= 0.

ii) If a ̸= 2, then using (4.5), p. 25, we have

∥X(z0)∥ = 2|H(z0)| ⇔ |a+ γ(a)γ′(a)| = 0

⇔
∣∣∣∣a+ a(γ(a))2

a2 − 4

∣∣∣∣ = a

∣∣∣∣1 + (γ(a))2

a2 − 4

∣∣∣∣ = 0

⇔ a = 0 or a < 2 and γ(a) = ±
√

4− a2.

In the second case, we have

γ(a) = ±
√

4− a2 and, by (4.7), γ′(a) = ∓ a√
4− a2

.

Since β(x) = ±
√
4− x2 is a solution of the self-shrinker equation with β(a) = γ(a) and β′(a) =

γ′(a), then by the uniqueness theorem for ordinary differential equations, γ(x) = β(x) in a
neighborhood of a and thus Σ is (a piece of) S2(2). If a = 2, then γ(2) = 0. This implies that

∥X(z0)∥2 − 4(H(z0))
2 =

4

1 + (γ′(2))2
̸= 0.

Therefore, if Σ is not (a piece of) a sphere then ∥X(z0)∥ = 2|H(z0)| if and only if a = 0, i.e., z0
is over the rotation axis. This concludes the first part of the proof of item ii).

In order to show that √
(∥X∥2 − 4H2)H2

∥Φ∥
̸∈ Lploc,

in the neighborhood of a = 0, consider the Taylor expansion of γ(x) for γ(0) = b > 0 and
γ′(0) = 0 given by Lemma 4.1, p. 26:

γ(x) = b− b

8
x2 − b

256

(
3 +

b2

4

)
x4 +O(x5).

By using (4.3), (4.4), and (4.5), p. 25, we have

∥Φ∥ =
x2
∣∣∣ b16 (1 + b2

4

)
+O(x)

∣∣∣
2
√
2
√
1 +O(x2)

,

|H| = |b+O(x)|√
1 +O(x2)

and
√
∥X∥2 − 4H2 =

∣∣∣(1− b2

4

)
x− b2

64

(
1 + b2

4

)
x3 +O(x4)

∣∣∣√
1 +O(x2)

.
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This implies√
(∥X∥2 − 4H2)H2

∥Φ∥
=

1

x

(
2
√
2|b+O(x)|√
1 +O(x2)

) ∣∣∣(1− b2

4

)
− b2

64

(
1 + b2

4

)
x2 +O(x3)

∣∣∣∣∣∣ b16 (1 + b2

4

)
+O(x)

∣∣∣ :=
F̃ (x)

x
,

where F̃ (0) = 32
√
2
∣∣1− b2/4

∣∣ (1 + b2/4
)−1

. If b = 2, then, by the uniqueness theorem for

ordinary differential equations, Σ is (a piece of) S2(2). Thus we can consider b ̸= 2, which

implies F̃ (0) > 0. In this case, we have, for sufficiently small ε > 0,∫
Bz0 (ε)

(√
(∥X∥2 − 4H2)H2

∥Φ∥

)p
dΣ =

∫ ε

0

∫ 2π

0

(
F̃ (x)

x

)p
x
√

1 + (γ′(x))2dθdx

≥ 2π

∫ ε

0

(
F̃ (x)

x

)p
xdx

≥ 2π(F̃ (0)− δ)p
∫ ε

0

1

xp−1
dx = ∞,

for some δ = δ(ε) > 0, since p > 2. This concludes the proof of item ii). □
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Instituto de Matemática, Universidade Federal de Alagoas, Maceió, AL, 57072-900, Brazil
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