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HILÁRIO ALENCAR AND GREGÓRIO SILVA NETO
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Abstract. In 1951, H. Hopf proved that the only surfaces, homeomorphic to the sphere, with constant

mean curvature in Euclidean space are the round (geometrical) spheres. These results were generalized by

S. S. Chern and then by Eschenburg and Tribuzy for surfaces homeomorphic to the sphere in Riemannian

manifolds with constant sectional curvature whose mean curvature function satisfies some bound on

its differential. In this paper, we extend these results for surfaces in a wide class of warped product

manifolds, which includes, besides the classical space forms of constant sectional curvature, the de Sitter-

Schwarzschild manifolds and the Reissner-Nordstrom manifolds, which are time slices of solutions of the

Einstein field equations of general relativity.

1. Introduction

In 1951, H. Hopf, see [24] and [25], proved that the only surfaces with constant mean curvature in

R3, homeomorphic to the sphere, are the round spheres. After 32 years, the result of Hopf was extended

to three-dimensional Riemannian manifolds of constant sectional curvature in 1983 by S.-S. Chern, see

[16], proving that the only surfaces with constant mean curvature in these spaces, homeomorphic to the

sphere, are the geodesic spheres. Later, in 1991, J. Eschenburg and R. Tribuzy (see Theorem 3, p. 151 of

[19]) observed that, to obtain a Hopf-type result, it is not necessary for the immersion to have constant

mean curvature, but just that the differential of the mean curvature function satisfies some upper bound,

namely

Theorem 1.1 (Eschenburg-Tribuzy). Let Q3
c be a three-dimensional Riemannian manifold with constant

sectional curvature c ∈ R. Let X : Σ → Q3
c be an immersed surface with mean curvature function H.

Assume that Σ is homeomorphic to the sphere. If there exists a local Lp, p > 2, function f : Σ → R such

that

(1.1) |dH| ≤ f
√
H2 −K + c,

where K is the Gaussian curvature of Σ, then X(Σ) is totally umbilical.
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In this paper, we generalize the Eschenburg-Tribuzy theorem for the more general class of three-

dimensional Riemannian manifolds M3 = I × S2, where I = (0, b) or I = (0,∞), with the metric

(1.2) ⟨·, ·⟩ = dt2 + h(t)2dω2,

where h : I → R is a smooth function, called warping function, and dω2 denotes the canonical metric of

the 2-dimensional round sphere S2. With the metric (1.2), the product M3 = I × S2 is called a warped

product manifold and generalizes the space forms with constant sectional curvature. In fact, the metrics

of the space forms of constant sectional curvature c ∈ R can be written in polar coordinates as in (1.2),

where

h(t) = t for R3, h(t) =
1√
c
sin(

√
ct) for S3(c), h(t) =

1√
−c

sinh(
√
−ct) for H3(c).

The warped product manifold M3 has two different sectional curvatures depending only on the parameter

t: one tangent to the slices {t}×S2, denoted by Ktan(t), and another relative to the planes which contain

the radial direction ∇t, denoted by Krad(t). In terms of the warping function, we can write

(1.3) Ktan(t) =
1− h′(t)2

h(t)2
and Krad(t) = −h′′(t)

h(t)
,

where X,Y ∈ TM3, X ⊥ ∇t, Y ⊥ ∇t.

These manifolds were first introduced by Bishop and O’ Neill in 1969, see [12], and are gaining increas-

ing importance due to their applications as model spaces in general relativity. Part of these applications

comes from the metrics that are solutions of the Einstein equations, such as the de Sitter-Schwarzschild

metric and the Reissner-Nordstrom metric, which we introduce later.

In recent years, immersions in warped product manifolds have been extensively studied, with many

interesting papers in this subject; for instance, see [29], [30], [11], [33], [10], [17], [3], [4], [5], [7], [9],

[37], [21], [20], [34], [38], [1], [23], [2], [22], and [35]. We can also cite the book of Petersen, see [32], for

a modern presentation of warped product manifolds, and the book of Besse [8] for an introduction to

general relativity and the deduction of Schwarzschild space-time from the Einstein equations.

The main result of this paper is the following generalization of Theorem 1.1 for a class of warped

product manifolds that contain the de Sitter-Schwarzschild and the Reissner-Nordstrom manifolds:

Theorem 1.2. Let Σ be a surface, homeomorphic to the sphere, immersed in a warped product manifold

M3 = I × S2, with mean curvature function H. If there exists a non-negative Lp, p > 2, function

f : Σ → R such that

(1.4) |dH + (Ktan(t)−Krad(t))νdt| ≤ f
√
H2 −K +Ktan(t)− (1− ν2)(Ktan(t)−Krad(t)),

then Σ is totally umbilical.

Moreover, if Ktan(t) ̸= Krad(t), except possibly for a discrete set of values t ∈ I, and Σ has constant

mean curvature, then Σ is a slice.

Remark 1.1. Actually, some additional hypothesis, such as (1.4), is needed in order to classify the slices

as the only constant mean curvature spheres. In fact, it was observed by Brendle (see [13], Theorem 1.5,
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p. 250) that a result of Pacard and Xu (see [31], Theorem 1.1, p. 276) implies that in some warped

product manifolds there are small spheres with constant mean curvature that are not umbilical.

Remark 1.2. To obtain the slice in the second part of Theorem 1.2, the assumption overM3 thatKtan(t) ̸=
Krad(t), except possibly for a discrete set of values t ∈ I, is necessary. In fact, if Ktan(t) = Krad(t) for

some interval (t0, t1) ⊂ I, then all the sectional curvatures of M3 will depend only on t. This will imply,

by the classical Schur’s Theorem, that M̃3 := (t0, t1)× S2 has constant sectional curvature. In this case,

there exist spheres, other than the slices, with constant mean curvature (in fact, the geodesic spheres

centered at some point of M̃3).

Remark 1.3. Again, to obtain the slice in the second part of Theorem 1.2, the assumption that H is

constant is necessary. In fact, defining φ : (r0, r1) ⊂ R → R+ by the equations

dr

φ(r)
= dt and

r

φ(r)
= h(t),

where r2 = x2
1 + x2

2 + x2
3, we can interpret the warped product M3 = I × S2 as the Euclidean space R3

(actually, a ring 0 ≤ r20 ≤ x2
1 + x2

2 + x2
3 ≤ r21 ≤ ∞) with the conformal metric

⟨·, ·⟩φ =
1

φ(r)2
(dr2 + r2dω2).

Since the spheres S2(C0, R) of any center C0 ∈ R3 and any radius R > 0 are umbilical surfaces of R3 with

umbilicity factor 1/R, S2(C0, R) remains umbilical for the conformal metric ⟨·, ·⟩φ, but with umbilicity

factor (see [14], p.183)

λ =
φ(r)

R
− φ′(r)N(r),

where N(r) denotes the derivative of r in the direction of the unitary (in the Euclidean metric) inner

normal vector field N of S2(C0, R). Notice that, if the sphere is not centered at the origin (i.e., r =

constant, which is equivalent to being a slice in the warped product manifold), the umbilicity factor λ is

not constant and the sphere does not have constant mean curvature. Therefore, if we drop the condition

that H is constant, we obtain other umbilical spheres that are not slices.

Two of the most famous examples of warped product manifolds are the de Sitter-Schwarzschild mani-

folds and the Reissner-Nordstrom manifolds, which we describe below.

Definition 1.1 (The de Sitter-Schwarzschild manifolds). Let m > 0, c ∈ R, and

(s0, s1) = {r > 0; 1−mr−1 − cr2 > 0}.

If c ≤ 0, then s1 = ∞. If c > 0, assume that cm2 < 4
27 . The de Sitter-Schwarzschild manifold is defined

by M3(c) = (s0, s1)× S2 endowed with the metric

⟨·, ·⟩ = 1

1−mr−1 − cr2
dr2 + r2dω2.

In order to write the metric in the form (1.2), define F : [s0, s1) → R by

F ′(r) =
1√

1−mr−1 − cr2
, F (s0) = 0.
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Taking t = F (r), we can write ⟨·, ·⟩ = dt2 + h(t)2dω2, where h : [0, F (s1)) → [s0, s1) denotes the inverse

function of F. The function h clearly satisfies

(1.5) h′(t) =
√

1−mh(t)−1 − ch(t)2, h(0) = s0, and h′(0) = 0.

For the de Sitter-Schwarzschild manifolds, we have

Ktan(t) = c+
m

h(t)3
and Krad(t) = c− m

2h(t)3
.

Replacing these facts in Theorem 1.2 and writing f in the place of 2
3mh3f in order to clean the presentation

(since the function f in Theorem 1.2 is an arbitrary Lp function, p > 2) we obtain

Corollary 1.1 (The de Sitter-Schwarzschild manifolds). Let Σ be a surface, homeomorphic to the sphere,

immersed in the de Sitter-Schwarzschild manifold with constant mean curvature. If there exists a non-

negative Lp, p > 2, function f : Σ → R such that

|νdt| ≤ f

√
H2 −K + c+

m(3ν2 − 1)

2h(t)3
,

then Σ is a slice.

Here, K is the Gaussian curvature of Σ, ν = ⟨∇t,N⟩ is the angle function, and N is the unitary

normal vector field of Σ in the de Sitter-Schwarzschild manifold.

Definition 1.2 (The Reissner-Nordstrom manifolds). The Reissner-Nordstrom manifold is defined by

M3 = (s0,∞)× S2, with the metric

⟨·, ·⟩ = 1

1−mr−1 + q2r−2
dr2 + r2dω2,

where m > 2q > 0 and s0 = 2q2

m−
√

m2−4q2
is the larger of the two solutions of 1 −mr−1 + q2r−2 = 0. In

order to write the metric in the form (1.2), define F : [s0,∞) → R by

F ′(r) =
1√

1−mr−1 + q2r−2
, F (s0) = 0.

Taking t = F (r), we can write ⟨·, ·⟩ = dt2 + h(t)2dω2, where h : [0,∞) → [s0,∞) denotes the inverse

function of F. The function h clearly satisfies

(1.6) h′(t) =
√
1−mh(t)−1 + q2h(t)−2, h(0) = s0, and h′(0) = 0.

For the Reissner-Nordstrom manifolds, we have

Ktan(t) =
m

h(t)3
− q2

h(t)4
and Krad(t) = − m

2h(t)3
+

q2

h(t)4
.

Moreover,

Ktan(t)−Krad(t) =
3m

2h(t)3
− 2q2

h(t)4
=

3mh(t)− 4q2

2h(t)4
> 0,

for every t ∈ (s0,∞), since 4q2/3m < s0.

Replacing these facts in Theorem 1.2 and writing f in the place of 2h4f
3mh−4q2 in order to clean the

presentation (since the function f in Theorem 1.2 is an arbitrary Lp function, p > 2) we obtain
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Corollary 1.2 (The Reissner-Nordstrom manifolds). Let Σ be a surface, homeomorphic to the sphere,

immersed in the Reissner-Nordstrom manifold with constant mean curvature. If there exists a non-

negative Lp, p > 2, function f : Σ → R such that

|νdt| ≤ f

√
H2 −K +

m(3ν2 − 1)

2h(t)3
+

q2(1− 2ν2)

h(t)4
,

then Σ is a slice.

Here, K is the Gaussian curvature of Σ, ν = ⟨∇t,N⟩ is the angle function, and N is the unitary

normal vector field of Σ in the Reissner-Nordstrom manifold.

Remark 1.4. Since the warped product manifold is smooth at t = 0 if and only if h(0) = 0, h′(0) = 1,

and all the even order derivatives are zero at t = 0, i.e., h(2k)(0) = 0, k > 0, see [32], Proposition 1, p.

13, we can see the de Sitter-Schwarzschild manifolds and the Reissner-Nordstrom manifolds are singular

at t = 0.

Acknowledgements. We would like to thank the referee for the careful reading of the early version

of this paper and for giving valuable comments and constructive suggestions.

2. Preliminaries

Let F : R3 → R be a smooth and positive function. We will denote by

(2.1) M3
F = (R3, ⟨·, ·⟩F ), where ⟨·, ·⟩F =

1

F (x1, x2, x3)2
(dx2

1 + dx2
2 + dx2

3)

be the conformally flat three dimensional manifold. Denote by f = logF and by fi =
∂f

∂xi
, i = 1, 2, 3. If

Γk
ij , i, j, k = 1, 2, 3, are the Christoffel symbols of M3, then

(2.2)

Γ1
11 = −f1, Γ2

11 = f2, Γ3
11 = f3, Γ1

12 = Γ1
21 = −f2, Γ2

12 = Γ2
21 = −f1, Γ3

12 = Γ3
21 = 0,

Γ1
13 = Γ1

31 = −f3, Γ2
13 = Γ2

31 = 0, Γ3
13 = Γ3

31 = −f1, Γ1
22 = f1, Γ2

22 = −f2, Γ3
22 = f3,

Γ1
23 = Γ1

32 = 0, Γ2
23 = Γ2

32 = −f3, Γ3
23 = Γ3

32 = −f2, Γ1
33 = f1, Γ2

33 = f2, Γ3
33 = −f3.

Let {e1, e2, e3} be the canonical basis of R3 with the canonical metric. The canonical orthonormal frame

of M3 is
E1(x1, x2, x3) = F (x1, x2, x3)e1,

E2(x1, x2, x3) = F (x1, x2, x3)e2,

E3(x1, x2, x3) = F (x1, x2, x3)e3.

Lemma 2.1. Let us denote by ∇ the connection R3 with the metric ⟨·, ·⟩F . We have

∇E1
E1 = F2E2 + F3E3, ∇E1

E2 = −F2E1, ∇E1
E3 = −F3E1,

∇E2E1 = −F1E2, ∇E2E2 = F1E1 + F3E3, ∇E2E3 = −F3E2,

∇E3
E1 = −F1E3, ∇E3

E2 = −F2E3, ∇E3
E3 = F1E1 + F2E2,

where Fi =
∂F

∂xi
, i = 1, 2, 3.
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Proof. We have

∇EiEj = F 2∇eiej + FFiej

= F 2(Γ1
ije1 + Γ2

ije2 + Γ3
ije3) + F 2fiej .

The result then follows by replacing the values of Γk
ij given by (2.2) and noticing that fi = Fi/F,

i = 1, 2, 3. □

Let Σ be a smooth two-dimensional Riemannian surface whose metric, in a local coordinate system

Φ : D ⊂ R2 → Σ, is given by

ds2 = E(u, v)du2 + 2F (u, v)dudv +G(u, v)dv2, (u, v) ∈ D.

A local coordinate system is called a system of isothermal parameters if E = G and F = 0. By the

results of Korn [26] and Lichtenstein [28] (for instance, see the work of Chern [15] for an elementary

proof), if the functions E,F,G : D ⊂ R2 → R are Hölder continuous of order 0 < λ < 1, then every

point of D has a neighborhood whose local coordinates are isothermal parameters (remember that a

function f : D ⊂ R2 → R is Hölder continuous of order λ > 0 if |f(u2, v2) − f(u1, v1)| ≤ Crλ, where

r =
√
(v2 − v1)2 + (u2 − u1)2).

Identifying R2 with the complex plane C by taking z = u+ iv and z̄ = u− iv, we have dz = du+ idv

and dz̄ = du− idv, which gives the rules of differentiation

∂

∂z
=

1

2

(
∂

∂u
− i

∂

∂v

)
and

∂

∂z̄
=

1

2

(
∂

∂u
+ i

∂

∂v

)
.

By using this complexification, we can write

(2.3) ds2 = α|dz + µdz̄|2,

where

α =
1

4

(
E +G+ 2

√
EG− F 2

)
and µ =

1

4α
(E −G+ 2iF ).

Here, α > 0 and |µ| < 1. If (x, y) are isothermal coordinates for Σ, then we can write

ds2 = E(u, v)(du2 + dv2) = α(z)|dz|2.

Remark 2.1. The existence of isothermal coordinates can also be proved by applying known existence

theorems to the Beltrami equation. In fact, since the change of coordinates satisfies

(2.4) ds2 = α|dz|2 = α|zw|2
∣∣∣∣dw2 +

zw̄
zw

dw̄

∣∣∣∣2 ,
comparing (2.3) and (2.4), there exist isothermal parameters in a neighborhood of Σ is and only if there

exists a solution of the Beltrami differential equation

∂z

∂w̄
= µ

∂z

∂w
.

By using Lp estimates for singular integral operators of Calderón and Zygmund, it can be proved that

the solution exists in any neighborhood where ∥µ∥∞ < 1 (see, for instance [36], p.20-21 and p.97).
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In this section, we will consider a smooth Riemannian surface Σ and an isometric immersion X : Σ →
M3

F . Taking isothermal parameters u and v in a neighborhood of Σ and complexifying the parameters by

taking z = u+ iv, we can identify this neighborhood of Σ with a subset of C and obtain

⟨Xz, Xz̄⟩F =
α(z)

2
,

where Xz = ∂X
∂z , Xz̄ = ∂X

∂z̄ , and α(z) is the conformal factor of Σ, i.e., ds2 = α(z)|dz|2 is the metric of

Σ. In this case, the second fundamental form becomes

II = Pdz2 +Hα|dz|2 + P̄ dz̄2,

where

Pdz2 = ⟨∇XzXz, NF ⟩F dz2

is the Hopf differential of X, i.e., the (2, 0)-part of the complexified second fundamental form. For more

details about the complexification and the Hopf differential, we refer to chapter VI of the classical book

of Hopf, see [25].

Remark 2.2. Here and after, the bar over a quantity will mean the complex conjugate of the quantity.

SinceXz = 1
2 (Xu−iXv) andXz̄ = 1

2 (Xu+iXv), whereXu = ∂X
∂u andXv = ∂X

∂v , we haveXu = Xz+Xz̄

and Xv = i(Xz −Xz̄). This implies

Xu ×Xv = i(Xz +Xz̄)× (Xz −Xz̄) = 2iXz̄ ×Xz,

where × means the usual vector product of R3. On the other hand,

∥Xu ×Xv∥F =
√
∥Xu∥2F ∥Xv∥2F − ⟨Xu, Xv⟩2F = 2⟨Xz, Xz̄⟩F = α,

where ∥Y ∥2F = ⟨Y, Y ⟩F , Y ∈ R3. Therefore, the unitary normal vector field of the immersion, with the

canonical orientation, is given by

(2.5) NF =
Xu ×Xv

∥Xu ×Xv∥F
=

2i

α
Xz̄ ×Xz.

We also have the following fundamental equations

(2.6)


∇XzXz =

αz

α
Xz + PNF

∇Xz̄
Xz =

αH

2
NF

∇Xz̄Xz̄ =
αz̄

α
Xz̄ + P̄NF


∇Xz

N = −HXz −
2P

α
Xz̄

∇Xz̄
N = −2P̄

α
Xz −HXz̄.

Since

(2.7)

P = ⟨∇Xz
Xz, NF ⟩F =

1

4
⟨∇Xu−iXv

Xu − iXv, NF ⟩F

=
1

4
[⟨∇XuXu, NF ⟩F − ⟨∇XvXv, NF ⟩F − i(⟨∇XuXv, NF ⟩F + ⟨∇XvXu, NF ⟩F )]

=
1

4
[II(Xu, Xu)− II(Xv, Xv)− 2iII(Xu, Xv)],



8 HILÁRIO ALENCAR AND GREGÓRIO SILVA NETO

where II is the second fundamental form of Σ in M3
F , we have P = 0 if and only if II is umbilical.

Moreover,

|P |2 =
1

16
[(II(Xu, Xu)− II(Xv, Xv))

2 + 4II(Xu, Xv)
2]

=
1

16
[(II(Xu, Xu) + II(Xv, Xv))

2 − 4(II(Xu, Xu)II(Xv, Xv)− II(Xu, Xv)
2)]

=
1

16
[(trace II)2 − 4(det II)].

Since H = 1
2 trace II is the mean curvature and, by the Gauss equation det II = K −K(TΣ), we have

(2.8) |P |2 =
1

4
(H2 −K +K(TΣ)).

Here K is the Gaussian curvature of Σ and K(TΣ) is the sectional curvature of M3
F relative to the two

dimensional subspace TΣ.

In order to prove our main theorem, we will need some computational lemmas.

Lemma 2.2. If Pdz2 = ⟨∇Xz
Xz, NF ⟩F dz2 is the Hopf differential of an isometric immersion X : Σ →

M3
F , then

(2.9) Pz̄ =
α

2
Hz + ⟨R(Xz, Xz̄)Xz, NF ⟩F ,

where R is the curvature tensor of M3
F and H is the mean curvature of X.

Proof. We have

Pz̄ =
∂

∂z̄
⟨∇XzXz, NF ⟩F

= ⟨∇Xz̄∇XzXz, NF ⟩F + ⟨∇XzXz,∇Xz̄NF ⟩F

= ⟨R̄(Xz, Xz̄)Xz, NF ⟩F + ⟨∇Xz
∇Xz̄

Xz, NF ⟩F + ⟨∇Xz
Xz,∇Xz̄

NF ⟩F

= ⟨R̄(Xz, Xz̄)Xz, NF ⟩F +
∂

∂z
(⟨∇Xz̄

Xz, NF ⟩F )− ⟨∇Xz̄
Xz,∇Xz

NF ⟩F + ⟨∇Xz
Xz,∇Xz̄

NF ⟩F

= ⟨R̄(Xz, Xz̄)Xz, NF ⟩F +
∂

∂z

(
αH

2

)
−

〈
αH

2
NF ,−HXz −

2P

α
Xz̄

〉
F

+

〈
αz

α
Xz + PNF ,−

2P

α
Xz −HXz̄

〉
F

= ⟨R̄(Xz, Xz̄)Xz, NF ⟩F +
αHz

2
.

□

In order to calculate the expression for ⟨R̄(Xz, Xz̄)Xz, NF ⟩F , we will use the following result, whose

proof can be found in [18], p. 98. Here we use the expression as it is written in the classical work of

Kulkarni [27], Proposition 2.2, p. 318.
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Lemma 2.3. Let (M, g) be a Riemannian manifold and ḡ = e2ϕg be a conformal metric. If R and R̄

denote the curvature tensors of M with metrics g and ḡ, respectively, then

R̄(X,Y )Z = R(X,Y )Z + [Hessϕ(Y,Z)− (Y ϕ)(Zϕ) + g(Y,Z)∥∇ϕ∥2]X

− [Hessϕ(X,Z)− (Xϕ)(Zϕ) + g(X,Z)∥∇ϕ∥2]Y

+ g(Y, Z)[∇X∇ϕ− (Xϕ)∇ϕ]− g(X,Z)[∇Y ∇ϕ− (Y ϕ)∇ϕ].

Here, Hessϕ, and ∇ are, respectively, the Hessian and the connection (and the gradient) relative to the

metric g.

Lemma 2.4. If X : (Σ, α(z)|dz|2) → M3
F be an isometric immersion with normal vector NF , then

(2.10) ⟨R̄(Xz, Xz̄)Xz, NF ⟩F = − α

2F
HessF (Xz, NF ),

where HessF is the Euclidean hessian of F.

Proof. First, notice that

(2.11)
⟨R̄(Xz, Xz̄)Xz, NF ⟩F =

1

8
⟨R̄(Xu − iXv, Xu + iXv)(Xu − iXv), NF ⟩F

=
i

4
⟨R̄(Xu, Xv)Xu, NF ⟩F +

1

4
⟨R̄(Xu, Xv)Xv, NF ⟩F .

Denoting by U · V the Euclidean inner product of the vectors U ∈ R3 and V ∈ R3, we have

(2.12) ⟨U, V ⟩F =
1

F 2
(U · V ).

By using Lemma 2.3 for ϕ = − logF , we have

(2.13)

⟨R̄(Xu, Xv)Xu, NF ⟩F = (Xv ·Xu)[⟨∇Xu
∇ϕ,NF ⟩F − (Xuϕ)⟨∇ϕ,NF ⟩F ]

− (Xv ·Xu)[⟨∇Xv∇ϕ,NF ⟩F − (Xvϕ)⟨∇ϕ,NF ⟩F ]

= −⟨Xu, Xu⟩F [((∇Xv
∇ϕ) ·NF )− (Xvϕ)(∇ϕ ·NF )]

= −⟨Xu, Xu⟩F [Hessϕ(Xv, NF )− (∇ϕ ·Xv)(∇ϕ ·NF )]

= −α[Hessϕ(Xv, NF )− (∇ϕ ·Xv)(∇ϕ ·NF )].

Analogously,

(2.14) ⟨R̄(Xu, Xv)Xu, NF ⟩F = α[Hessϕ(Xu, NF )− (∇ϕ ·Xu)(∇ϕ ·NF )].

Replacing (2.13) and (2.14) in (2.11), gives

⟨R̄(Xz, Xz̄)Xz, NF ⟩F =
α

2
[Hessϕ(Xz, NF )− (∇ϕ ·Xz)(∇ϕ ·NF )].

On the other hand, since

∇ϕ = −∇F

F
and Hessϕ(U, V ) = − 1

F
HessF (U, V ) +

1

F 2
(∇F · U)(∇F · V ),

we obtain

⟨R̄(Xz, Xz̄)Xz, NF ⟩F = − α

2F
HessF (Xz, NF ).

□
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Lemma 2.5. If X : (Σ, α(z)|dz|2) → M3
F be an isometric immersion, then

(2.15)
4

α(F (X))2
∥X∥z∥X∥z̄ +

(
X

∥X∥
·N

)2

= 1,

where ∥X∥ denotes the Euclidean norm of X, N = FNF , and U · V denotes the Euclidean inner product

of the vectors U and V.

Proof. Identifying TpΣ with the complex plane C, for each point p ∈ Σ, and since N = FNF is normal

to TΣ, we can consider the adapted frame {Xz, Xz̄, N} in TpΣ × R ≡ C × R ≡ R3 ≡ M3
F , where the ≡

sign means linear isomorfism. Thus, we can write

X = aXz + bXz̄ + cN,

for smooth functions a, b, c : Σ → C. Since Xz ·Xz = Xz̄ ·Xz̄ = 0 implies

X ·Xz = a(Xz ·Xz) + b(Xz̄ ·Xz) + c(N ·Xz)

= b(F (X))2⟨Xz̄, Xz⟩F = b(F (X))2
α

2
,

and analogously for X ·Xz̄ and X ·N, we have

X =
2

α(F (X))2
(X ·Xz̄)Xz +

2

α(F (X))2
(X ·Xz)Xz̄ + (X ·N)N.

This implies

∥X∥2 = X ·X =
8

α2(F (X))4
(X ·Xz)(X ·Xz̄)(Xz̄ ·Xz) + (X ·N)2

=
8

α2(F (X))4
(X ·Xz)(X ·Xz̄)

α(F (X))2

2
+ (X ·N)2

=
4

α2(F (X))2
(X ·Xz)(X ·Xz̄) + (X ·N)2.

By using X · Xz = ∥X∥∥X∥z and X · Xz̄ = ∥X∥∥X∥z̄, we obtain the result by dividing the expression

above by ∥X∥2. □

Lemma 2.6. Let X : (Σ, α(z)|dz|2) → M3
F be an isometric immersion. If K(TΣ) denotes the sectional

curvature of M3
F relative to the plane dX(TΣ), then

K(TΣ) = −∥∇F∥2 + 4

α(z)F (X(z))
HessF (Xz, Xz̄),

where ∥∇F∥2 =
(

∂F
∂x1

(X(z))
)2

+
(

∂F
∂x2

(X(z))
)2

+
(

∂F
∂x3

(X(z))
)2

and HessF denotes the Euclidian hessian

of F.

Proof. Considering the frame {Xz, Xz̄} in TΣ, we have

K(TΣ) =
⟨R(Xz, Xz̄)Xz, Xz̄⟩F

⟨Xz, Xz⟩F ⟨Xz̄, Xz̄⟩F − ⟨Xz̄, Xz⟩2F
= −⟨R(Xz, Xz̄)Xz, Xz̄⟩F

⟨Xz̄, Xz⟩2F
,

i.e.,

(2.16) K(TΣ) = − 4

α(z)2
⟨R(Xz, Xz̄)Xz, Xz̄⟩F .
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Since

(2.17)
⟨R(Xz, Xz̄)Xz, Xz̄⟩F =

1

16
⟨R(Xu − iXv, Xu + iXv)(Xu − iXv), Xu + iXv⟩F

= −1

4
⟨R(Xu, Xv)Xu, Xv⟩F ,

using Lemma 2.3 for ϕ = − logF , we obtain

⟨R(Xu, Xv)Xu, Xv⟩F = −[Hessϕ(Xu, Xu)− (Xu · ∇ϕ)2 + (Xu ·Xu)∥∇ϕ∥2]⟨Xv, Xv⟩F

− (Xu ·Xu)[⟨∇Xv
∇ϕ,Xv⟩F − (Xv · ∇ϕ)⟨∇ϕ,Xv⟩F ]

= −α[Hessϕ(Xu, Xu)− (Xu · ∇ϕ)2 + (Xu ·Xu)∥∇ϕ∥2]

− α[Hessϕ(Xv, Xv)− (Xv · ∇ϕ)2],

where U · V denotes the Euclidean inner product of the vectors U, V ∈ R3. Since

∇ϕ =
1

F
∇F, Hessϕ(U, V ) = − 1

F
HessF (U, V ) +

1

F 2
(∇F · U)(∇F · V )

and Xu ·Xu = F 2⟨Xu, Xu⟩F = F 2α, we have

⟨R(Xu, Xv)Xu, Xv⟩F = −α

[
− 1

F
(HessF (Xu, Xu) + HessF (Xv, Xv)) + α∥∇F∥2

]
.

On the other hand,

HessF (Xz, Xz̄) =
1

4
HessF (Xu − iXv, Xu + iXv) =

1

4
[HessF (Xu, Xu) + HessF (Xv, Xv)],

which gives

(2.18) ⟨R(Xu, Xv)Xu, Xv⟩F = −α2∥∇F∥2 + 4α

F
HessF (Xz, Xz̄).

The result then comes by replacing (2.18) in (2.17) and then in (2.16). □

3. Proof of the main result

Warped product manifolds can be seen as conformally flat Riemannian manifolds with radial weight,

as follows. By taking the spherical coordinates in R3, we obtain

dx2
1 + dx2

2 + dx2
3 = dr2 + r2dω2,

where r =
√
x2
1 + x2

2 + x2
3 and dω2 is the canonical metric of the round sphere S2. Let

A(r0, r1) = {(x1, x2, x3) ∈ R3; r20 ≤ x2
1 + x2

2 + x2
3 ≤ r21}.

If F : A(r0, r1) ⊂ R3 → R is a radial function, then there exists a positive real function φ : (r0, r1) ⊂
R → R such that F (x1, x2, x3) = φ(r). In this case, we have

⟨·, ·⟩F =
1

φ(r)2
(dr2 + r2dω2).

Define G : (r0, r1) → R by G′(r) = 1/φ(r). Since G′(r) > 0, we have that the function G is invertible.

Let G−1 : I ⊂ R → (r0, r1) be the inverse function of G, where I = G((r0, r1)), and let t = G(r). Defining

h(t) =
G−1(t)

φ(G−1(t))
,
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we have

(3.1)
dr

φ(r)
= dt and

r

φ(r)
= h(t).

The metric ⟨·, ·⟩F thus becomes the warped metric

(3.2) ⟨·, ·⟩ = dt2 + h(t)2dω2,

where h : I ⊂ R → R is a smooth function, called the warping function, and M3
F can be seen as the

product M3 = I × S2 with the metric (3.2), where I ⊂ R is an interval.

To prove our main theorem, we will need the following Lemma, which is an adaptation of a result due

to Eschenburg and Tribuzy, see [19] (see also the main Lemma of [6]):

Lemma 3.1 (Eschenburg-Tribuzy, [19]). Let Q : U ⊂ C → C be a complex function defined in an open

set U of the complex plane. Assume that

|Qz̄| ≤ f(z)|Q(z)|

where f ∈ Lp, p > 2, is a continuous, non-negative real function. Assume further that z = z0 ∈ U is a

zero of Q. Then either Q ≡ 0 in a neighborhood V ⊂ U of z0 or

Q(z) = (z − z0)
kQk(z), z ∈ V, k ≥ 1,

where Qk(z) is a continuous function with Qk(z0) ̸= 0.

This lemma has the following consequence for surfaces homeomorphic to the sphere. The argument is

contained in the proof of the main theorem of [6], and we include a proof here for the sake of completeness.

Lemma 3.2. Let Σ be a Riemann surface homeomorphic to the sphere. Let Qdz2 denote a complex

quadratic differential on Σ. Assume that

(3.3) |Qz̄| ≤ f0|Q|,

where f0 : Σ → R is a non-negative and Lp function, p > 2, and z is a local conformal parameter. Then

Q ≡ 0 in Σ.

Proof. Let U ⊂ Σ be an open set covered by isothermal coordinates. Assume that the set of zeros of Q

in U is not empty and let z0 ∈ U be a zero of Q. By the Lemma 3.1, either Q is identically zero in a

neighborhood V of z0 or this zero is isolated and the index of a direction field determined by Im[Qdz2] = 0

is −k/2 (hence negative). If, for some coordinate neighborhood V of zero, Q ≡ 0, this will be so for the

whole Σ, otherwise, the zeroes on the boundary of V will contradict Lemma 3.1. So if Q is not identically

zero, all zeroes are isolated and have negative indices. Since Σ has genus zero, the sum of the indices

of the singularities of any field of directions is 2 (hence positive) by the Poincaré Index Theorem. This

contradiction shows that Q is identically zero. Notice also that Q must have a zero by the Poincaré Index

theorem, since the sum of the index is 2 (hence nonzero). □
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Proof of Theorem 1.2. Differentiating the second equation of (3.1) relative to r, and using the first one,

we have

r = φ(r)h(t) ⇒ 1 = φ′(r)h(t) + φ(r)h′(t)
dt

dr
⇒ 1 = φ′(r)h(t) + h′(t)

which implies

(3.4) φ′(r) =
1− h′(t)

h(t)
.

Differentiating (3.4) relative to r and using the first equation of (3.1), we obtain

φ′′(r) =
d

dt

(
1− h′(t)

h(t)

)
dt

dr
=

(
−h′′(t)h(t)− (1− h′(t))h′(t)

h(t)2

)
1

φ(r)
,

i.e.,

(3.5) φ′′(r)φ(r) = −h′′(t)

h(t)
− (1− h′(t))h′(t)

h(t)2
.

On the other hand, for F (x1, x2, x3) = φ(r), where r =
√

x2
1 + x2

2 + x2
3, we have

∂F

∂xi
= xi

φ′(r)

r
⇒ ∂2F

∂xi∂xj
=

φ′(r)

r
δij +

xixj

r2

(
φ′′(r)− φ′(r)

r

)
.

This implies, for V,W ∈ R3,

HessF (V,W ) =
φ′(r)

r
(V ·W ) +

1

r2

(
φ′′(r)− φ′(r)

r

)
(X · V )(X ·W ).

We observe that

(3.6)
∂

∂t
=

∂

∂r

dr

dt
= φ(r)

∂

∂r

and NF = φ(r)N gives

ν =

〈
∂

∂t
,NF

〉
=

〈
φ(r)

∂

∂r
, φ(r)N

〉
F

= φ(r)2
[

1

φ(r)2

(
∂

∂r
·N

)]
=

(
X

∥X∥
·N

)
,

provided ∂/∂r = X/∥X∥. Since

X ·Xz = ∥X∥(∥X∥)z = rrz, X ·Xz̄ = ∥X∥(∥X∥)z̄ = rrz̄,

we can rewrite the equation (2.15) of Lemma 2.5 as

(3.7)
4

αφ(r)2
rzrz̄ + ν2 = 1.
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This implies,

4

αF
HessF (Xz, Xz̄) =

4

αφ(r)

φ′(r)

r
(Xz ·Xz̄) +

4

αφ(r)r2

(
φ′′(r)− φ′(r)

r

)
(X ·Xz)(X ·Xz̄)

=
4φ′(r)φ(r)

r

⟨Xz, Xz̄⟩F
α

+
4

αφ(r)r2

(
φ′′(r)− φ′(r)

r

)
(rrz)(rrz̄)

=
2φ′(r)φ(r)

r
+

(
φ′′(r)φ(r)− φ(r)φ′(r)

r

)
4

αφ(r)2
rzrz̄

=
2φ′(r)φ(r)

r
+

(
φ′′(r)φ(r)− φ(r)φ′(r)

r

)
(1− ν2)

=
2(1− h′(t))

h(t)2
−

(
h′′(t)

h(t)
+

(1− h′(t))h′(t)

h(t)2
+

1− h′(t)

h(t)2

)
(1− ν2)

=
2(1− h′(t))

h(t)2
−

(
h′′(t)

h(t)
+

1− h′(t)2

h(t)2

)
(1− ν2).

Since, using (3.4),

∥∇F∥2 = φ′(r)2 =
(1− h′(t))2

h(t)2
,

we have

−∥∇F∥2 + 4

αF
HessF (Xz, Xz̄) = − (1− h′(t))2

h(t)2
+

2(1− h′(t))

h(t)2
−
(
h′′(t)

h(t)
+

1− h′(t)2

h(t)2

)
(1− ν2)

=
1− h′(t)2

h(t)2
−

(
h′′(t)

h(t)
+

1− h′(t)2

h(t)2

)
(1− ν2)

= Ktan(t)− (Ktan(t)−Krad(t))(1− ν2).

Thus, using Lemma 2.6, p. 10, and the the equation (2.8), p.8, we have

(3.8)

|P | = 1

2

√
H2 −K +K(TΣ)

=
1

2

√
H2 −K − ∥∇F∥2 + 4

αF
HessF (Xz, Xz̄)

=
1

2

√
H2 −K +Ktan(t)− (Ktan(t)−Krad(t))(1− ν2).

On the other hand, since
∂r

∂z
=

dr

dt

∂t

∂z
= φ(r)

∂t

∂z
,

we have

(3.9)

HessF (Xz, N) =
1

r2

(
φ′′(r)− φ′(r)

r

)
(X ·Xz)(X ·N)

=

(
φ′′(r)φ(r)− φ′(r)φ(r)

r

)
ν

φ(r)
rz

= −
(
h′′(t)

h(t)
+

1− h′(t)2

h(t)2

)
ν

φ(r)
rz

= −(Ktan(t)−Krad(t))
ν

φ(r)
rz

= −(Ktan(t)−Krad(t))ν
∂t

∂z
.
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Replacing (3.9) in (2.10) and then in (2.9), we obtain

Pz̄ =
α

2
Hz −

α

2
HessF (Xz, N) =

α

2
[Hz + (Ktan(t)−Krad(t))νtz].

Since
|Pz̄| =

α

2
|Hz + (Ktan(t)−Krad(t))νtz|

=
α

2
|dH(Xz) + (Ktan(t)−Krad(t))νdt(Xz)|

≤ α

2
|dH + (Ktan(t)−Krad(t))νdt|∥Xz∥

=
(α
2

)3/2

|dH + (Ktan(t)−Krad(t))νdt|,

the hypothesis (1.4) and (3.8) imply

|Pz̄| ≤ 2
(α
2

)3/2

f |P |.

This implies, using Lemma 3.2, p. 12, for f0 = 2
(
α
2

)3/2
f , that P = 0 everywhere in Σ. Therefore, by

(2.7), Σ is umbilic.

If H is constant, then |P | ≡ 0 gives

|Ktan(t)−Krad(t)||ν||dt| ≡ 0.

This and the hypothesis that Ktan(t) ̸= Krad(t), except possibly by a discrete set of values t ∈ I, gives

|Ktan(t)−Krad(t)| = 0 only for discrete set, which implies, by continuity, that

|ν||dt| ≡ 0.

Let D1 = {z ∈ Σ; ν = 0} and D2 = {z ∈ Σ; dt = 0}. We have D1 ∪D2 = Σ. Observe that, using

rz =
∂r

∂z
=

dr

dt

∂t

∂z
= φ(r)tz

and analogous expression for rz̄, in (3.7), we have

4

α
tztz̄ + ν2 = 1.

This gives that ν2 = 1 in D2. Thus, by continuity of ν, we have D1 ∩D2 = ∅, and D1 = ∅ or D1 = Σ.

But, since Σ is compact, there exist t0, t1 ∈ I such that Σ ⊂ [t0, t1]×S2. Taking the least value of t1 with

this property, we have that Σ is tangent to the slice {t1} × S2 and, at this point of tangency, we have

ν2 = 1, i.e., D2 ̸= 0. Thus, D1 = ∅ and D2 = Σ, which implies dt = 0 everywhere, and this gives that t

is constant, i.e., X(Σ) is a slice.

□
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Gebiete, Krak. Anz. (1916), 192–217 (German). Zbl 46.0547.01

[29] Sebastián Montiel, Stable constant mean curvature hypersurfaces in some Riemannian manifolds, Comment. Math.

Helv. 73 (1998), no. 4, 584–602, DOI 10.1007/s000140050070. MR1639892

[30] Sebastián Montiel, Unicity of constant mean curvature hypersurfaces in some Riemannian manifolds, Indiana Univ.

Math. J. 48 (1999), no. 2, 711–748, DOI 10.1512/iumj.1999.48.1562. MR1722814 (2001f:53131)

[31] F. Pacard and X. Xu, Constant mean curvature spheres in Riemannian manifolds, Manuscripta Math. 128 (2009),

no. 3, 275–295, DOI 10.1007/s00229-008-0230-7. MR2481045

[32] Peter Petersen, Riemannian geometry, 2nd ed., Graduate Texts in Mathematics, vol. 171, Springer, New York, 2006.

MR2243772
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Instituto de Matemática, Universidade Federal de Alagoas, Maceió, AL, 57072-900, Brazil,
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