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Abstract. In this paper we prove that two-dimensional translating solitons in R3 with

finite L-index are homeomorphic to a plane or a cylinder and that a two-dimensional

self-expander with finite L-index and sub exponential weighted volume growth has finite

topology. We also prove that translating solitons and self-expanders have finite topology,

provided the bottom of the spectrum of the L-stability operator is bounded from below

and their weighted volume have subexponential growth.

1. Introduction

1.1. Translating solitons. We say a hypersurface Σ of Rn+1 is translating soliton (or,

shortly, a translator) of the mean curvature flow if

H = 〈ν, V 〉,

where H is its mean curvature, V is a parallel unitary vector field of Rn+1, and ν is the

outward normal vector field of Σ. Throughout this work, we will use the convention that

H = traceA, where A(Y ) = ∇Y ν and ∇ is the connection of Rn+1. Under this convention,

the mean curvature of the round sphere Sn(R) of radius R is n/R and the mean curvature

of the right circular cylinder Sk(R)× Rn−k of radius R is k/R.

Translating solitons are known as type II singularities of the mean curvature flow.

Huisken and Sinestrari showed in [22] that if the initial hypersurface is mean convex and

the singularity is of type II, then any limit hypersurface is a convex translating soliton.
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Hamilton [18] proved that any strictly convex eternal solution to the mean curvature flow

where the mean curvature assumes its maximum value at a point in space-time must

be a translating soliton. These hypersurfaces are also known as self-similar solutions of

the mean curvature flow moving by translation, i.e., if Σ is a translating soliton, then

Σt = Σ + tV is a solution of the mean curvature flow for all times t ∈ R.

On the other hand, translating solitons can also be seen as critical points of the weighted

area functional ˆ
Σ

e〈x,V 〉dΣ,

under every compactly supported normal normal variation of Σ. Taking the second de-

rivative, we obtain

d2

dt2

(ˆ
Σ

e〈x,V 〉dΣ

)∣∣∣∣
t=0

= −
ˆ

Σ

ξ
[
∆ξ + 〈V,∇ξ〉+ |A|2

]
e〈V,x〉dΣ

=: −
ˆ

Σ

ξLξe〈x,V 〉dΣ

for variations of the form ξν, where ξ is a smooth function with compact support in Σ,

where Lξ = ∆ξ + 〈V,∇ξ〉 + |A|2. Since L is an elliptic operator, we can consider its

spectrum. Given a bounded domain Ω ⊂ Σ, define the L-index of Ω by

IndL(Ω) = #{negative eigenvalues of L on C∞0 (Ω)}

and the L-index of Σ as

IndL(Σ) := sup
Ω⊂Σ

IndL(Ω).

The L-index is the maximal dimension of the subspace in C∞0 (Σ) such that the quadratic

form

QL(ξ, ξ) = −
ˆ

Σ

ξLξe〈x,V 〉dΣ

is negative. Intuitively, this is the maximal dimension of the subspaces in C∞0 (Σ) such

that the compact variations decrease the weighted area.

In this subject, Impera and Rimoldi, see Theorem D of [27], proved that a n-dimensional

translating soliton in Rn+1 with finite L-index has finitely many ends. We prove

Theorem 1.1. If Σ ⊂ R3 is a two-dimensional complete translating soliton with finite

L-index, then Σ is homeomorphic to C or C\{0}. In particular, Σ has at most two ends.
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Moreover, for every ε ∈ (0, 1),

lim
Q→∞

1

eQ

ˆ
B(εQ)

|A|2e〈x,V 〉dΣ <∞ and lim
Q→∞

1

Q2eQ

ˆ
B(εQ)

e〈x,V 〉dΣ <∞.

Remark 1.1. We say that translating solitons with L-index equal to zero are L-stable.

Equivalently, a translating soliton is said L-stable if and only if

d2

dt2

(ˆ
Σ

e〈x,V 〉dΣ

)∣∣∣∣
t=0

≥ 0

for all the compactly supported normal variations. In Theorem C of [27], Impera and

Rimoldi proved that a complete, L-stable, translating hypersurface of Rn+1 has at most

one end. For dimension two, the topological classification of complete L-stable translating

solitons was completed by Kunikawa and Saito, see [24], proving that any complete, two-

dimensional, L-stable translating soliton has genus zero. Theorem 1.1 generalizes these

two results for the two-dimensional situation.

Remark 1.2. There are many interesting classification results for two-dimensional translat-

ing solitons in R3. For example, Spruck and Xiao proved in [31] that complete, immersed,

translating solitons with nonnegative mean curvature are convex. Shahriyari in [28] proved

that complete translating graphs in R3 are L-stable and there is no complete translating

graph in R3 over a bounded connected domain with smooth boundary. In [21], Hoffman,

Ilmanen, Mart́ın, and White classified all complete translating graphs in R3 : they are

the grim reaper surface, the tilted grim reaper surfaces, the bowl soliton and a family of

graphs ub : R × (−b, b) → R, for b > π/2. We can also mention that Tasayco and Zhou,

see [33], proved that the grim reaper hypersurface is only nonplanar translating soliton

of R3 and R4 whose weighted integral of |A|2 over a geodesic ball has at most quadratic

growth for large radius R.

Inspired by Colding and Minicozzi (see the section 9 of [10]) we can define the bottom

of the spectrum of the elliptic operator L by

µ1 = inf
ξ

−
´

Σ
ξLξe〈x,V 〉dΣ´

Σ
ξ2e〈x,V 〉dΣ

= inf
ξ

´
Σ

[|∇ξ|2 − |A|2ξ2] e〈x,V 〉dΣ´
Σ
ξ2e〈x,V 〉dΣ

,

where the infimum is taken over all smooth functions ξ with compact support in Σ. We

prove
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Theorem 1.2. Let Σ ⊂ R3 be a translating soliton. If µ1 ≥ −δ, for some δ > 0 and

lim
Q→∞

1

eQ

ˆ
B(Q)

e〈x,V 〉dΣ <∞,

then Σ has finite topology. Moreover, for every ε ∈ (0, 1), it holds

lim
Q→∞

1

eQ

ˆ
B(εQ)

|A|2e〈x,V 〉dµ <∞.

Here, B(Q) is the geodesic ball of Σ with center in a reference point x0 ∈ Σ and radius

Q > 0.

A immediate consequence of the result above is the following

Corollary 1.1. If a two-dimensional complete translating soliton Σ ⊂ R3 has infinite

topology, then µ1 = −∞ or

lim
Q→∞

1

eQ

ˆ
B(Q)

e〈x,V 〉dΣ =∞.

Remark 1.3. There are examples of two-dimensional translating solitons with infinite

genus constructed by Nguyen, see [25] and [26].

1.2. Self-expanders. A self-expander of the mean curvature flow is a hypersurface Σ ⊂
Rn+1 which satisfies

H(x) = −1

2
〈x, ν〉,

where H is its mean curvature and ν is the outward unitary normal vector field of Σ.

Self-expanders play an important role in the mean curvature flow. They describe the

asymptotic long time behavior for the flow and its local structure after the singularities

in the very short time. In fact, Ecker and Huisken proved in [13] that the mean curvature

flow exists for all times t > 0 if the initial surface is an entire graph which is “straight” at

infinity in the sense that |〈x, ν〉| ≤ C(1 + ‖x‖)1−δ for some δ > 0 and C <∞. Moreover,

the flow converges to a self-expander. Later, Stavrou [32] proved the same result under

the weaker hypothesis that the graphical function have an unique tangent cone at infinity.

Self-expanders are also known as self-similar solutions which expands homothetically

under the mean curvature flow in the sense that, if Σ is a self-expander, then Σt =
√
tΣ

is a solution of the flow for every t > 0.

Examples of asymptotically conical self-expanders were obtained by Ecker and Huisken

in [13], Angenent, Ilmanen and Chopp, see [3], and by Helmensdorfer in [20]. Recent
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results about self-expanders were obtained, for example, by Cheng and Zhou, see [9], by

Bersntein and Wang, see [5] and [6], Ding, see [12], Deruelle and Schulze, see [11], and

Ancari and Cheng, see [2].

Self-expanders are also critical points of the weighted area functional
ˆ

Σ

e
1
4
‖x‖2dΣ.

Taking the second derivative of this functional, we have

d2

dt2

(ˆ
Σ

e
1
4
‖x‖2dΣ

)∣∣∣∣
t=0

= −
ˆ

Σ

ξ

[
∆ξ +

1

2
〈x, ν〉+

(
|A|2 − 1

2

)
ξ

]
e

1
4
‖x‖2dΣ

= −
ˆ

Σ

ξLξe
1
4
‖x‖2dΣ,

where Lξ = ∆ξ + 1
2
〈x, ν〉 +

(
|A|2 − 1

2

)
ξ. Since L is an elliptic operator, we can consider

its spectrum.

Analogously it was done for translating solitons, we can also define the L-index for

self-expander. For self-expanders with finite L-index, we have

Theorem 1.3. Let Σ ⊂ R3 be a two-dimensional complete self-expander of the mean

curvature flow. If Σ has finite L-index and there exist β > 1 such that

lim
Q→∞

1

e
β
4
Q2

ˆ
B(Q)

e
1
4
‖x‖2dΣ <∞,

then Σ has finite topology. Moreover, for every ε ∈ (0, 1) it holds

lim
Q→∞

1

e
β
4
Q2

ˆ
B(εQ)

|A|2e
1
4
‖x‖2dµ <∞.

Here, B(Q) is the geodesic ball of Σ with center in a reference point x0 ∈ Σ and radius

Q > 0.

As an immediate consequence of the result above we have

Corollary 1.2. If a complete two-dimensional self-expander Σ ⊂ R3 has infinite topology,

then it has infinite index or

lim
Q→∞

1

e
β
4
Q2

ˆ
B(Q)

e
1
4
‖x‖2dΣ =∞,

for every β > 1.
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We can define the bottom of the L operator for self-expanders by

µ1 = inf
ξ

−
´

Σ
ξLξe

1
4
‖x‖2dΣ´

Σ
ξ2e

1
4
‖x‖2dΣ

= inf
ξ

´
Σ

[
|∇ξ|2 −

(
|A|2 − 1

2

)
ξ2
]
e

1
4
‖x‖2dΣ´

Σ
ξ2e

1
4
‖x‖2dΣ

,

where the infimum is taken over all smooth functions ξ with compact support in Σ. We

have, for complete self-expanders, the following result:

Theorem 1.4. Let Σ ⊂ R3 be a two-dimensional complete self-expander of the mean

curvature flow.

(i) If µ1 ≥ 1/2, then Σ is homeomorphic to C or C\{0} and, moreover, if µ1 > 1/2,

then, for every ε ∈ (0, 1) and β > 1, it holds

lim
Q→∞

1

e
β
4
Q2

ˆ
B(εQ)

e
1
4
‖x‖2dµ <∞;

(ii) If µ1 ∈ (−∞, 1/2), and there exist β > 1 such that

lim
Q→∞

1

e
β
4
Q2

ˆ
B(Q)

e
1
4
‖x‖2dµ <∞;

then Σ has finite topology;

(iii) In both situations of items (i) and (ii) it holds

lim
Q→∞

1

e
β
4
Q2

ˆ
B(εQ)

|A|2e
1
4
‖x‖2dµ <∞.

Here, B(Q) is the geodesic ball of Σ with center in a reference point x0 ∈ Σ and radius

Q > 0.

Remark 1.4. If Σ is homeomorphic to C\{0} then both limits in items (i) and (iii) are

equal to zero. We can also prove that, if µ1 = 1/2, then

lim
Q→∞

1

Q2e
β
4
Q2

ˆ
B(εQ)

e
1
4
‖x‖2dµ <∞;

for every ε ∈ (0, 1) and β > 1.

As an immediate consequence of the result above we have

Corollary 1.3. If a complete two-dimensional self-expander Σ ⊂ R3 has infinite topology,

then µ1 = −∞ or

lim
Q→∞

1

e
β
4
Q2

ˆ
B(Q)

e
1
4
‖x‖2dΣ =∞,

for every β > 1.
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Remark 1.5. Recently, Ancari and Cheng, see [2], proved some upper bounds for the bot-

tom µ1 of the L-stability operator of self-expanders. They also proved that the cylinders

Γ×Rn−1, where Γ is a self-expanding curve (which were classified by Ishimura in [23] and

Halldorson in [17]), are self-expanders with µ1 = n+1
2
. We observe that, for n = 2, these

surfaces are a class of self-expanders which satisfies the hypothesis of item (i) of Theorem

1.4.

Remark 1.6. The results we present here will be proven in the more general setting for f -

minimal surfaces Σ in three-dimensional weighted Riemannian manifolds (M3, 〈·, ·〉, e−f )
satisfying

Scal +Hessf(ν, ν) ≥ k,

for some k ∈ R. Here, Scal is the scalar curvature of M3 and Hessf(ν, ν) is the hessian

tensor of f in M3 applied to the unitary normal vector field ν of Σ in M3.

2. Preliminaries

Let Σ be a Riemannian surface with Gaussian curvature K. Fixed a point x0 ∈ Σ, let

r(x) be the Riemannian (intrinsic) distance in Σ from x0 to x ∈ Σ. Let B(s) be the open

geodesic ball in Σ of center x0 and radius s. Denote by L(s) the length of the boundary

of B(s). This length function is a priori only defined for s ∈ R+\E, where the set of

exceptional values E is closed, and has Lebesgue measure zero. For t < s, denote for

C(t, s) = B(s)\B(t), where B(t) is the closure of B(t).

Definition 2.1. Let χ(B(t)) be the Euler characteristic of the open ball B(t). We set

χ̂(s) = sup{χ(B(t))|t ∈ [s,∞)}.

The following result is basic and well known. For a more details, we refer to the work

[4] of Bérard and Castillon.

Lemma 2.1. The function χ̂(s) is continuous on the left, nonincreasing from [0,∞) to

Z, and with at most countably many discontinuities. Moreover, if {tj}Nj=1 = {0 < t1 <

t2 < · · · < tn < · · · } is the set of discontinuities, where N ∈ N ∪ {∞}, N = 0, when the

sequence is empty, and N =∞, when the sequence is infinite, then

(i) at each discontinuity tn, n ≥ 1, the function χ̂ has a jump

ωn = χ̂(t−n )− χ̂(t+n ), ωn ∈ N, ωn ≥ 1;
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(ii) it holds χ̂(s) = 1, for s ∈ [0, t1], and

χ̂(s) = 1− (ω1 + · · ·+ ωn) ≤ −(n− 1),

for s ∈ (tn, tn+1].

Remark 2.1. Notice that this sequence depends on the reference point x0.

In the proof of our results we will use following inequalities, which were proved first by

Fiala [14] for the set R+\E and were extended to R+ by the work Hartman [19], Shiohama

and Tanaka [29] and [30].

Lemma 2.2 ((Fiala’s inequality)). On the set R+\E, the function L is of class C1 and

its extension to R+ satisfies

(i) L′(t) ≤ 2πχ(B(t))−
ˆ
B(t)

KdΣ;

(ii) L(b)− L(a) ≤ L(b−)− L(a) ≤
ˆ b

a

L′(t)dt,

whenever 0 ≤ a < b, where χ(B(t)) is the Euler characteristic of B(t).

The proof of the following Lemma can also be found in [4].

Lemma 2.3. Let Σ be a complete Riemannian surface. Let {tn}Nn=1 be the set of discon-

tinuities of the function χ, with jumps ωn, relative to some reference point x0 ∈ Σ. Let

χ(Σ) be the Euler characteristic of Σ, with χ(Σ) = −∞ if Σ does not have finite topology.

Then

1−
N∑
n=1

ωn ≤ χ(Σ).

We will also need the following consequence of the coarea formula.

Lemma 2.4. For every g : Σ→ R locally integrable,ˆ
B(t)

gdΣ =

ˆ t

−∞

[ˆ
∂B(u)

gds

]
du,

where ds is the length element of ∂B(u). In particular,

d

dt

[ˆ
B(t)

gdΣ

]
=

ˆ
∂B(u)

gds.

Definition 2.2. Let 0 ≤ R < S. We say that a function ξ : [R, S] → R is admissible in

the interval [R, S], if
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(i) ξ is of class C1 and piecewise C2 in [R, S];

(ii) ξ ≥ 0, ξ′ ≤ 0 and ξ′′ ≥ 0.

The next lemma uses the ideas of the proof of Theorem 3.4, p. 223 of Gulliver and

Lawson, see [16], see also Lemma 2.2, p.1245 of [4] and Lemma 1.8 p.276, of the work [7]

of Castillon.

Lemma 2.5. Fix x0 ∈ Σ and let r(x) be the distance to x0 in Σ. Given f : Σ → R be a

locally integrable function, let F : [0,∞)→ R be a function such that F (Q) ≤ infB(Q) f(x).

Then, for every 0 ≤ R < Q, and for any admissible function ξ on [R,Q],

ˆ
C(R,Q)

Kξ(r)2e−fdΣ ≤ e−F (Q) [ξ2G+ 2ξξ′L− 2πχ̂(R)ξ2]
∣∣Q
R
−
ˆ
C(R,Q)

(ξ2)′′(r)e−fdΣ.

(2.1)

Proof. Let

G(t) =

ˆ
B(t)

KdΣ and H(t) =

ˆ t

R

G(u)du.

Since f ≥ F (Q) in C(R,Q), we have e−f ≤ e−F (Q). This gives

ˆ
C(R,Q)

Kξ(r)2e−fdΣ ≤ e−F (Q)

ˆ
C(R,Q)

Kξ(r)2dΣ.

On the other hand, by using the coarea formula (see Lemma 2.4), we have

ˆ
C(R,Q)

Kξ(r)2dΣ =

ˆ Q

R

ξ(t)2

ˆ
S(t)

Kdsdt

=

ˆ Q

R

ξ(t)2G′(t)dt = ξ2G
∣∣Q
R
−
ˆ Q

R

(ξ2)′Gdt

= ξ2e−FG
∣∣Q
R
−
ˆ Q

R

(ξ2)′H ′dt

= ξ2e−FG
∣∣Q
R
− (ξ)′H|QR +

ˆ Q

R

(ξ2)′′Hdt.

By using the Fiala’s inequality, see Lemma 2.2, we obtain

H(t) =

ˆ t

R

G(u)du ≤
ˆ t

R

[2πχ(B(u))− L′(u)]du

≤ 2πχ̂(R)(t−R)− L(t) + L(R).
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Since ξ is admissible, then (ξ2)′ = 2ξξ′ ≤ 0 and (ξ2)′′ = 2(ξ′)2 + 2ξξ′′ ≥ 0. Thus, using

that H(R) = 0,ˆ
C(R,Q)

Kξ(r)2dΣ ≤ ξ2G
∣∣Q
R
− (ξ2)′(Q)[2πχ̂(R)(Q−R)− L(Q) + L(R)]

+ 2πχ̂(R)

ˆ Q

R

(ξ2)′′(t)(t−R)dt+ L(R)

ˆ Q

R

(ξ2)′′(t)dt

−
ˆ Q

R

(ξ2)′′(t)L(t)dt

= ξ2G
∣∣Q
R
− 2πχ̂(R)(ξ2)′(Q)(Q−R)

+ L(Q)(ξ2)′(Q)− L(R)(ξ2)′(Q)

+ 2πχ̂(R)

[
(ξ2)′(Q)(Q−R)−

ˆ Q

R

(ξ2)′(t)dt

]
+ L(R)(ξ2)′(Q)− L(R)(ξ2)′(R)−

ˆ Q

R

(ξ2)′′(t)L(t)dt

= ξ2G
∣∣Q
R

+ (ξ2)′L
∣∣Q
R
− 2πχ̂(R)(ξ2)

∣∣Q
R
−
ˆ Q

R

(ξ2)′′(t)L(t)dt

= [ξ2G+ (2ξξ′)L− 2πχ̂(R)ξ2]
∣∣Q
R
−
ˆ Q

R

(ξ2)′′(t)L(t)dt.

Thus,
ˆ
C(R,Q)

Kξ(r)2e−fdΣ ≤ e−F (Q) [ξ2G+ (2ξξ′)L− 2πχ̂(R)ξ2]
∣∣Q
R
− e−F (Q)

ˆ Q

R

(ξ2)′′(t)L(t)dt.

By using the coarea formula again and the fact that (ξ2)′′(t) ≥ 0, we have

e−F (Q)

ˆ Q

R

(ξ2)′′(t)L(t)dt = e−F (Q)

ˆ Q

R

(ξ2)′′(t)

ˆ
S(t)

dsdt

= e−F (Q)

ˆ
C(R,Q)

(ξ2)′′(r)|∇Σr|dΣ

= e−F (Q)

ˆ
C(R,Q)

(ξ2)′′(r)dΣ

≥
ˆ
C(R,Q)

(ξ2)′′(r)e−fdΣ.

The result then follows. �

Lemma 2.6. Let {tn}Nn=1 be the discontinuities of the function χ̂. Define the index N(R)

to be the largest integer n such that tn ≤ R. Let ξ be an admissible function in the interval
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[R,Q]. If f : Σ→ R is a locally integrable function and F (Q) ≤ infB(Q) f(x), then

eF (Q)

ˆ
C(R,Q)

Kξ(r)2e−fdΣ ≤ [ξ2G+ (ξ2)′L]
∣∣Q
R

+ 2πχ̂(tN(R))ξ(R)2

−
N(Q)∑

n=N(R)+1

2πωnξ(tn)2 − 2πχ̂(tN(Q))ξ(Q)2

− eF (Q)

ˆ
C(R,Q)

(ξ2)′′(r)e−fdΣ.

(2.2)

In particular, if R = 0 and assuming that ξ(Q) = 0, then

ˆ
B(Q)

Kξ(r)2e−fdΣ ≤ 2πe−F (Q)

ξ(0)2 −
N(Q)∑
n=1

ωnξ(tn)2

− ˆ
B(Q)

(ξ2)′′(r)e−fdΣ.(2.3)

Proof. Applying Lemma 2.5, we have

eF (Q)

ˆ
C(R,Q)

Kξ(r)2e−fdΣ = eF (Q)

ˆ
C(R,tN(R)+1)

Kξ(r)2e−fdΣ

+

N(Q)−1∑
n=N(R)+1

eF (Q)

ˆ
C(tn,tn+1)

Kξ(r)2e−fdΣ

+ eF (Q)

ˆ
C(tN(Q),Q)

Kξ(r)2e−fdΣ

≤ [ξ2G+ 2ξξ′L]
∣∣Q
R
− 2πχ̂(tN(R))[ξ(tN(R)+1)2 − ξ(R)2]

− 2π

N(Q)−1∑
n=N(R)+1

χ̂(tn)[ξ(tn+1)2 − ξ(tn)2]

− 2πχ̂(tN(Q))[ξ(Q)2 − ξ(tN(Q))
2]

− eF (Q)

ˆ
C(R,Q)

(ξ2)′′(r)e−fdΣ.

Since χ̂(tn) = ωn + χ̂(tn−1), we have

χ̂(tN(R))[ξ(tN(R)+1)2 − ξ(R)2] +

N(Q)−1∑
n=N(R)+1

χ̂(tn)[ξ(tn+1)2 − ξ(tn)2]

+ χ̂(tN(Q))[ξ(Q)2 − ξ(tN(Q))
2]
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= χ̂(tN(R))ξ(tN(R)+1)2 − χ̂(tN(R))ξ(R)2 +

N(Q)−1∑
n=N(R)+1

χ̂(tn)ξ(tn+1)2

−
N(Q)−2∑
n=N(R)

χ̂(tn+1)ξ(tn+1)2 + χ̂(tN(Q))ξ(Q)2 − χ̂(tN(Q))ξ(tN(Q))
2

= −χ̂(tN(R))ξ(R)2 +

N(Q)−1∑
n=N(R)

χ̂(tn)ξ(tn+1)2 −
N(Q)−1∑
n=N(R)

χ̂(tn+1)ξ(tn+1)2 + χ̂(tN(Q))ξ(Q)2

= −χ̂(tN(R))ξ(R)2 −
N(Q)∑
N(R)+1

[χ̂(tn)− χ̂(tn−1)]ξ(tn)2 + χ̂(tN(Q))ξ(Q)2

= −χ̂(tN(R))ξ(R)2 −
N(Q)∑
N(R)+1

ωnξ(tn)2 + χ̂(tN(Q))ξ(Q)2.

The estimate (2.2) then follows.

�

Definition 2.3. Let (Σ, 〈·, ·〉, e−f ) be a Riemannian surface with weighted measure e−fdΣ

and ∆fu = ef div(e−fu) = ∆u − 〈∇f,∇u〉 be its weighted (drifted) Laplacian, where

∆ denotes the Laplacian and ∇ denotes the gradient on Σ. If W is a locally integrable

function and a ∈ R, we say that the operator ∆f−aK−W is nonnegative if the quadratic

form

(2.4) Q(ξ, ξ) = −
ˆ

Σ

ξ [∆fξ − aKξ −Wξ] e−fdΣ =

ˆ
Σ

(|∇ξ|2 + aKξ2 +Wξ2)e−fdΣ

is nonnegative for every ξ ∈ C∞0 (Σ).

Proposition 2.1. Let Σ be complete, noncompact Riemannian surface, let f : Σ → R
and W : Σ → R be locally integrable functions, and let F : [0,∞) → R be a function

such that F (Q) ≤ infB(Q) f(x), where B(Q) is the geodesic ball of Σ with center at a fixed

reference point x0 ∈ Σ and radius Q > 0. If the operator ∆f − aK −W is nonnegative,

then

eF (Q)

ˆ
B(Q)

W−ξ(r)
2e−fdΣ + eF (Q)

ˆ
B(Q)

[(2a− 1)(ξ′(r))2 + 2aξ(r)ξ′′(r)]e−fdΣ

+ 2πa

N(Q)∑
n=1

ωnξ(tn)2 ≤ 2πaξ(0)2 + eF (Q)

ˆ
B(Q)

W+ξ(r)
2e−fdΣ,

(2.5)
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for every admissible function with support in B(Q). In particular, if a ∈ (1/4,∞) and

taking ξ(t) = (1− t/Q)2α for α > 4a/(4a− 1), we have, for every ε ∈ (0, 1),

(1− ε)2αeF (Q)

ˆ
B(εQ)

W−e
−fdΣ + α[(4a− 1)α− 2a](1− ε)2α−2 e

F (Q)

Q2

ˆ
B(εQ)

e−fdΣ

+ 2πa

N(Q)∑
n=1

ωn

(
1− tn

Q

)2α

≤ 2πa+ eF (Q)

ˆ
B(Q)

W+e
−fdΣ.

(2.6)

Here, W+ = max{W, 0}, W− = max{−W, 0}, {tn}Nn=1 is the set of discontinuities of the

function χ̂, ωn = χ̂(t−n )− χ̂(t+n ), and N(Q) is the largest integer n such that tn ≤ Q.

Proof. First notice that W = W+ −W−. Applying the inequality (2.4) to the admissible

function ξ(r(x)) gives

ˆ
B(Q)

W−ξ(r)
2e−fdΣ ≤

ˆ
B(Q)

[(ξ′(r))2 + aKξ(r)2]e−fdΣ +

ˆ
B(Q)

W+ξ(r)
2e−fdΣ.

Considering ξ(Q) = 0 and using (2.3), we have

ˆ
B(Q)

W−ξ(r)
2e−fdΣ ≤

ˆ
B(Q)

(ξ′(r))2e−fdΣ + 2πae−F (Q)

ξ(0)2 −
N(Q)∑
n=1

ωnξ(tn)2


− a
ˆ
B(Q)

(ξ2)′′(r)e−fdΣ +

ˆ
B(Q)

W+ξ(r)
2e−fdΣ.

= 2πae−F (Q)ξ(0)2 +

ˆ
B(Q)

[(1− 2a)(ξ′(r))2 − 2aξ(r)ξ′′(r)]e−fdΣ

− 2πa

N(Q)∑
n=1

ωnξ(tn)2 +

ˆ
B(Q)

W+ξ(r)
2e−fdΣ.

This proves (2.5). By taking ξ(r) = (1− r/Q)α, where α > 1, we have

ξ′(r) = −α
Q

(
1− r

Q

)α−1

≤ 0, and ξ′′(r) =
α(α− 1)

Q2

(
1− r

Q

)α−2

≥ 0,

which implies that ξ is admissible. Moreover,

(1− 2a)(ξ′(r))2 − 2aξ(r)ξ′′(r) = −α[(4a− 1)α− 2a]

Q2

(
1− r

Q

)2α−2

.
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This gives

eF (Q)

ˆ
B(Q)

W−

(
1− r

Q

)2α

e−fdΣ + 2πa

N(Q)∑
n=1

ωn

(
1− tn

Q

)2α

+ α[(4a− 1)α− 2a]
eF (Q)

Q2

ˆ
B(Q)

(
1− r

Q

)2α−2

e−fdΣ

≤ 2πa+ eF (Q)

ˆ
B(Q)

W+e
−fdΣ.

(2.7)

Taking a > 1/4 and α > 4a
4a−1

, all the terms in the left hand side of (2.7) are nonnegative.

In order to conclude the proof of the proposition, notice that, for every ε ∈ (0, 1),

ˆ
B(Q)

W−

(
1− r

Q

)2α

e−fdΣ ≥
ˆ
B(εQ)

W−

(
1− r

Q

)2α

e−fdΣ

≥ (1− ε)2α

ˆ
B(εQ)

W−e
−fdΣ.

Analogously, since, for r ∈ [0, εQ], (1−ε)β < (1−r/Q)β < 1 if β > 0 and 1 < (1−r/Q)β <
1

(1−ε)β if β < 0, we have

eF (Q)

Q2

ˆ
B(Q)

(
1− r

Q

)2α−2

e−fdΣ ≥ (1− ε)2α−2 e
F (Q)

Q2

ˆ
B(εQ)

e−fdΣ.

Replacing these two estimates in (2.7) gives

(1− ε)2αeF (Q)

ˆ
B(εQ)

W−e
−fdΣ + 2πa

N(Q)∑
n=1

ωn

(
1− tn

Q

)2α

+ α[(4a− 1)α− 2a](1− ε)2α−2 e
F (Q)

Q2

ˆ
B(εQ)

e−fdΣ

≤ 2πa+ eF (Q)

ˆ
B(Q)

W+e
−fdΣ.

�

3. f-Index

Let (M3, 〈·, ·〉, e−f ) be a weighted three-dimensional Riemannian manifold. We say that

a surface Σ immersed in M3 is f -minimal, if its mean curvature satisfies

H = 〈∇f, ν〉,
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where ∇ denotes the gradient of M3 and ν is the outward unitary normal vector field of

the immersion. Complete f -minimal surfaces are the critical points of the weighted area

functional ˆ
Σ

e−fdΣ

under all the compactly supported normal variations. Taking the second derivative, we

obtain

d2

dt2

(ˆ
Σ

e−fdΣ

)∣∣∣∣
t=0

= −
ˆ

Σ

ξ[∆fξ + (|A|2 + Ricf (ν, ν))ξ]e−fdΣ

:= −
ˆ

Σ

ξLfξe
−fdΣ,

for every variation of the form ξν, where ξ : Σ → R is a smooth compactly supported

function. Here,

Lfξ = ∆fξ + (|A|2 + Ricf (ν, ν))ξ

is the Lf -stability operator,

∆fξ = ef div(e−f∇ξ) = ∆ξ − 〈∇f,∇ξ〉

is the weighted (drifted) Laplacian, |A|2 is the squared norm of the second fundamental

form of Σ, Ricf = Ric + Hessf, Ric is the Ricci tensor of M3, and Hessf is the Hessian

tensor of f in M3. We refer the reader to Cheng, Mejia and Zhou, see [8], to more detailed

discussions and calculations.

Since, Lf is an elliptic operator, we can consider the spectrum of Lf . In a more general

setting, let L = ∆f−W be an elliptic differential operator, where W is a locally integrable

function. Given a bounded domain Ω ⊂ Σ, define

IndL(Ω) = #{negative eigenvalues of L on C∞0 (Ω)}

and the f -index of Σ as

Indf (Σ) := IndL(Σ) = sup
Ω⊂Σ

IndL(Ω).

The f -index is the dimension of the maximal subspace of C∞0 (Σ) such that the quadratic

form

QL(ξ, ξ) = −
ˆ

Σ

ξ [∆fξ −Wξ] e−fdΣ =

ˆ
Σ

[
|∇ξ|2 +Wξ2

]
e−fdΣ

is negative. We will need the following result, whose proof is in [1]:
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Proposition 3.1. Let (Σ, 〈·, ·〉, e−f ) be a weighted complete Riemannian manifold and let

W be a locally integrable function on Σ. Then the operator L = ∆f −W has finite f -index

if and only if there exists a locally integrable function P with compact support such that

the operator ∆f −W − P is nonnegative.

Now we are ready to present the main result of this section. In the following we will

consider the f -index of the stability operator

Lf = ∆f + (Ricf (ν, ν) + |A|2).

This theorem will the core of the proof of Theorem 1.1 and Theorem 1.3.

Theorem 3.1. If a complete f -minimal surface Σ of a weighted three-dimensional Rie-

mannian manifold (M3, 〈·, ·〉, e−f ), for infΣ f = −∞, has finite f -index and satisfies

(i) Scal +Hessf(ν, ν) ≥ 0, then Σ is homeomorphic to C or C\{0};
(ii) Scal +Hessf(ν, ν) ≥ −δ, for some δ > 0, and

lim
Q→∞

eF (Q)

ˆ
B(Q)

e−fdΣ <∞,

for some function F : [0,∞) → R such that F (Q) ≤ infB(Q) f, then Σ has finite

topology.

Moreover, in both situations, for every ε ∈ (0, 1), we have

(3.1) lim
Q→∞

eF (Q)

ˆ
B(εQ)

|A|2e−fdΣ <∞, and lim
Q→∞

eF (Q)

Q2

ˆ
B(εQ)

e−fdΣ <∞.

Here, B(Q) is the geodesic ball of Σ with center in a reference point x0 ∈ Σ and radius

Q > 0, Scal is the scalar curvature of M3, Hessf is the Hessian tensor of f in M3, and

ν is the unitary normal vector field of the immersion.

Proof. Since Σ has finite index, by Proposition 3.1, there exists a locally integrable func-

tion P, with compact support, such that Lf −P is nonnegative. Let us apply Proposition

2.1 to Lf − P . Let {tn}Nn=1 be the discontinuities of χ̂(s). Choose N = N if N <∞ and

consider N as any fixed integer if N = ∞. By taking Q large enough, inequality (2.6)
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gives

(1− ε)2αeF (Q)

ˆ
B(εQ)

[
1

2
|A|2 +

1

2
〈∇f, ν〉2 + Scal +Hessf(ν, ν) + δ

]
e−fdΣ

+ α(3α− 2)(1− ε)2α−2 e
F (Q)

Q2

ˆ
B(εQ)

e−fdΣ

+ 2π
N∑
n=1

ωn

(
1− tn

Q

)2α

≤ 2π + δeF (Q)

ˆ
B(Q)

e−fdΣ + eF (Q)

ˆ
Σ

Pe−fdΣ.

(3.2)

Notice that, since P has compact support and it is locally integrable, then last in integral

in the right hand side of (3.2) is finite. On the other hand, since infΣ f = −∞, we have

that limQ→∞ F (Q) = −∞, which implies that limQ→∞ e
F (Q) = 0. Therefore,

lim
Q→∞

eF (Q)

ˆ
B(Q)

Pe−fdΣ = 0.

By taking Q→∞ and N → N, we obtain

N∑
n=1

ωn <∞.

Since ωn ≥ 1, we get N <∞. On the other hand, Lemma 2.3, p.8, implies

1−
N∑
n=1

ωn ≤ χ(Σ).

Therefore, by using these facts and taking the limit when Q→∞ in (3.2),

(1− ε)2α lim
Q→∞

eF (Q)

ˆ
B(εQ)

[
1

2
|A|2 +

1

2
〈∇f, ν〉2 + Scal +Hessf(ν, ν) + δ

]
e−fdΣ

+ α(3α− 2)(1− ε)2α−2 lim
Q→∞

eF (Q)

Q2

ˆ
B(εQ)

e−fdΣ

≤ 2πχ(Σ) + δ lim
Q→∞

eF (Q)

ˆ
B(Q)

e−fdΣ.

(3.3)

Since, by hypothesis, the left-hand side is nonnegative, we have

2πχ(Σ) + δ lim
Q→∞

eF (Q)

ˆ
B(Q)

e−fdΣ ≥ 0.
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Thus, if δ = 0, χ(Σ) ≥ 0, which implies that Σ is homeomorphic to C or C\{0}. On the

other hand, if δ > 0, then

χ(Σ) ≥ − 1

2π
lim
Q→∞

eF (Q)

ˆ
B(Q)

e−fdΣ > −∞

by hypothesis, i.e., Σ has finite topology. The inequalities in (3.1) comes from (3.3) and

noticing that each integral in the right hand side of this inequality is nonnegative. �

Now, we prove Theorem 1.1 and Theorem 1.3 of the Introduction.

Proof of Theorem 1.1. Since

〈x, V 〉 ≤ ‖x‖ and r(x) ≥ ‖x− x0‖ ≥ ‖x‖ − ‖x0‖,

we have

〈x, V 〉 ≤ r(x) + ‖x0‖.

This gives

inf
B(Q)
−〈V, x〉 ≥ −Q− ‖x0‖ =: F (Q).

By using F (Q) = −Q − ‖x0‖, the proof is a direct consequence of Theorem 3.1, item

(i). �

Proof of Theorem 1.3. Notice that

r(x) ≥ ‖x− x0‖.

This gives

r(x)2 ≥ ‖x− x0‖2

≥ (‖x‖ − ‖x0‖)2

= ‖x‖2 − 2‖x‖‖x0‖+ ‖x0‖2

≥ (1− η)‖x‖2 + (1− 1/η)‖x0‖2,

for every η ∈ (0, 1), where in the last inequality we used the Peter-Paul inequality 2ab ≤
ηa2 + (1/η)b2. This gives

1

4
‖x‖2 ≤ 1

4(1− η)
r(x)2 +

1

4η
‖x0‖2,

i.e., for f(x) = −1
4
‖x‖2, we can consider

F (Q) = −β
4
Q2 +

1

4η
‖x0‖2,
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where β = 1
1−η > 1. The result then follows by applying Theorem 3.1, item (ii) to this

choice of F (Q). �

4. The bottom of the spectrum of the stability operator

Since Lf = ∆f +(Ricf (ν, ν)+ |A|2) is an elliptic operator, we can consider the spectrum

of Lf and, inspired in the Colding-Minicozzi article [10], section 9, we can define the

bottom of the spectrum as follows.

Definition 4.1. Let Σ ⊂ (M3, 〈·, ·〉, e−f ) be a f -minimal surface. We define the bottom

of the spectrum of the Lf -operator on Σ by

µ1 = inf
ξ

−
´

Σ
ξLfξe

−fdΣ´
Σ
ξ2e−fdΣ

= inf
ξ

´
Σ

[
|∇ξ|2 − (|A|2 + Ricf (ν, ν))ξ2

]
e−fdΣ´

Σ
ξ2e−fdΣ

,

where the infimum is taken over every smooth function with compact support in Σ.

Since the squared norm of the second fundamental form satisfies

|A|2 = H2 − 2(K −K(TΣ))

= 〈∇f,N〉2 − 2K + 2K(TΣ),

where K(TΣ) is the sectional curvature of M3 at the plane TΣ, and ∆fξ = ef div(e−f∇ξ),
then the Definition 4.1 is equivalent to

0 ≤
ˆ

Σ

[
|∇ξ|2 +Kξ2 −

(
1

2
|A|2 +

1

2
〈∇f,N〉2 + Scal +Hessf(ν, ν)

)
ξ2 − µ1ξ

2

]
e−fdΣ,

for every smooth function ξ with compact support in Σ.

The following result, for general f -minimal surfaces, is the core of the proof of Theorem

1.2 and Theorem 1.4.

Theorem 4.1. Let Σ be a complete, f -minimal surface of a weighted three-dimensional

Riemannian manifold (M3, 〈·, ·〉, e−f ) such that infΣ f = −∞ and Scal +Hessf(ν, ν) ≥ −δ,
for some δ ∈ R. If the bottom µ1 of the spectrum of Lf satisfies

(i) µ1 ≥ δ, then Σ is homeomorphic to C or C\{0} and, moreover, if µ1 > δ, then, for

every ε ∈ (0, 1), and for every function F : [0,∞)→ R such that F (Q) ≤ infB(Q) f,

it holds

lim
Q→∞

eF (Q)

ˆ
B(εQ)

e−fdΣ <∞;
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(ii) µ1 ∈ (−∞, δ) and

lim
Q→∞

eF (Q)

ˆ
B(Q)

e−fdΣ <∞

for some function F : [0,∞) → R such that F (Q) ≤ infB(Q) f, then Σ has finite

topology.

Moreover, in both situations, for every ε ∈ (0, 1) we have

(4.1) lim
Q→∞

eF (Q)

ˆ
B(εQ)

[
1

2
|A|2 + (Scal +Hessf(ν, ν) + δ)

]
e−fdΣ <∞.

Here, B(Q) is the geodesic ball of Σ with center in a reference point x0 ∈ Σ and radius

Q > 0, Scal is the scalar curvature of M3, Hessf is the Hessian tensor of f in M3, and

ν is the unitary normal vector field of the immersion.

Proof. To prove item (i), let us apply Proposition 2.1 to

W = −
(

1

2
|A|2 +

1

2
〈∇f, ν〉2 + Scal +Hessf(ν, ν) + µ1

)
= −

(
1

2
|A|2 +

1

2
〈∇f, ν〉2 + Scal +Hessf(ν, ν) + δ + (µ1 − δ)

)
.

By using the hypothesis, we obtain that W+ ≡ 0. Using inequality (2.6), we have

(1− ε)2αeF (Q)

ˆ
B(εQ)

(
1

2
|A|2 +

1

2
〈∇f, ν〉2 + Scal +Hessf(ν, ν) + µ1

)
e−fdΣ

+ α(3α− 2)(1− ε)2α−2 e
F (Q)

Q2

ˆ
B(εQ)

e−fdµ+ 2π

N(Q)∑
n=1

ωn

(
1− tn

Q

)2α

≤ 2π.

Choose N = N if N < ∞ and consider N as any fixed integer if N = ∞. By taking Q

large enough and taking Q→∞, we obtain

(1− ε)2α lim
Q→∞

eF (Q)

ˆ
B(εQ)

(
1

2
|A|2 +

1

2
〈∇f, ν〉2

)
e−fdΣ

+ (1− ε)2α lim
Q→∞

eF (Q)

ˆ
B(εQ)

(
Scal +Hessf(ν, ν) + δ + (µ1 − δ)

)
e−fdΣ

+ α(3α− 2)(1− ε)2α−2 lim
Q→∞

eF (Q)

Q2

ˆ
B(εQ)

e−fdµ+ 2π
N∑
n=1

ωn ≤ 2π.

(4.2)

Since all the terms in the left hand side are nonnegative, taking N → N, we obtain that

N∑
n=1

ωn ≤ 1.
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Using that ωn ≥ 1, thus N = 0 and Σ is homeomorphic to C or N = 1, ω1 = 1 and Σ is

homeomorphic to C\{0}. On the other hand, if µ1 > δ, then, by (4.2),

(1− ε)2α(µ1 − δ) lim
Q→∞

eF (Q)

ˆ
B(εQ)

e−fdΣ ≤ 2π.

This concludes the proof of item (i). In order to prove item (ii), we apply Proposition 2.1

to

W = −
(

1

2
|A|2 +

1

2
〈∇f, ν〉2 + Scal +Hessf(ν, ν) + µ1

)
= −

(
1

2
|A|2 +

1

2
〈∇f, ν〉2 +

(
Scal +Hessf(ν, ν) + δ

))
+ (δ − µ1).

Here, unlike item (i), W+ = δ − µ1 > 0. By using the hypothesis and inequality (2.6), we

have

(1− ε)2αeF (Q)

ˆ
B(εQ)

(
1

2
|A|2 +

1

2
〈∇f, ν〉2 + Scal +Hessf(ν, ν) + δ

)
e−fdΣ

+ α(3α− 2)(1− ε)2α−2 e
F (Q)

Q2

ˆ
B(εQ)

e−fdµ+ 2π

N(Q)∑
n=1

ωn

(
1− tn

Q

)2α

≤ 2π + (δ − µ1)eF (Q)

ˆ
B(Q)

e−fdΣ <∞.

(4.3)

Choose N = N if N < ∞ and consider N as any fixed integer if N = ∞. By taking Q

large enough and taking Q→∞, we obtain

N∑
n=1

ωn <∞.

Since, by the Lemma 2.3,

1−
N∑
n=1

ωn ≤ χ(Σ),

we have that χ(Σ) > −∞, i.e., Σ has finite topology. The finiteness of the integral (4.1)

comes directly from the estimates (4.2) and (4.3). �

Remark 4.1. In the limit case that µ1 = δ we still can prove that

(4.4) lim
Q→∞

eF (Q)

Q2

ˆ
B(εQ)

e−fdΣ <∞.

This is an immediate consequence of the estimate (4.2).
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Remark 4.2. If Σ is homeomorphic to C\{0}, then both limits in (4.2) and (4.3) are equal

to zero. In fact, if C\{0}, then

(1− ε)2α lim
Q→∞

eF (Q)

ˆ
B(εQ)

(
1

2
|A|2 +

1

2
〈∇f, ν〉2

)
e−fdΣ

+ lim
Q→∞

eF (Q)

ˆ
B(εQ)

[
Scal +Hessf(ν, ν) + δ + (µ1 − δ)

]
e−fdΣ

+ α(3α− 2)(1− ε)2α−2 lim
Q→∞

eF (Q)

Q2

ˆ
B(εQ)

e−fdµ ≤ 0,

which implies that all the limits are equal to zero.

A translating soliton is a f -minimal surface for the weight f(x) = −〈x, V 〉. Since

f(x) = −〈x, V 〉 is not necessarily bounded from below, in the next we will use Theorem

4.1 to prove Theorem 1.2 of the Introduction:

Proof of Theorem 1.2. It is an immediate consequence of Theorem 4.1, item (ii), and

(4.1), by taking F (Q) = −Q− ‖x0‖ and δ = 0. �

A self-expander is a f -minimal surface for f(x) = −1
4
‖x‖2. As a particular case of

Theorem 4.1, we obtain the proof of Theorem 1.4:

Proof of Theorem 1.4. The proof of item (i) comes from item (i) of Theorem 4.1 by taking

δ = 1/2. The proof of item (ii) follows by applying Theorem 4.1, item (ii) choosing

F (Q) = −β
4
Q2 + β−1

4β
‖x0‖2, β > 1, and for δ = 1/2. In its turn, item (iii) is a direct

consequence of (4.1) using our choice of F (Q). �
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Math. Helv. 13 (1941), 293–346, DOI 10.1007/BF01378068 (French). MR6422

[15] Doris Fischer-Colbrie and Richard Schoen, The structure of complete stable minimal surfaces in 3-

manifolds of nonnegative scalar curvature, Comm. Pure Appl. Math. 33 (1980), no. 2, 199–211, DOI

10.1002/cpa.3160330206. MR562550

[16] Robert Gulliver and H. Blaine Lawson Jr., The structure of stable minimal hypersurfaces near

a singularity, Geometric measure theory and the calculus of variations (Arcata, Calif., 1984),

Proc. Sympos. Pure Math., vol. 44, Amer. Math. Soc., Providence, RI, 1986, pp. 213–237, DOI

10.1090/pspum/044/840275. MR840275

[17] Hoeskuldur P. Halldorsson, Self-similar solutions to the curve shortening flow, Trans. Amer. Math.

Soc. 364 (2012), no. 10, 5285–5309, DOI 10.1090/S0002-9947-2012-05632-7. MR2931330

[18] Richard S. Hamilton, Harnack estimate for the mean curvature flow, J. Differential Geom. 41 (1995),

no. 1, 215–226, DOI 10.4310/jdg/1214456010. MR1316556

[19] Philip Hartman, Geodesic parallel coordinates in the large, Amer. J. Math. 86 (1964), 705–727, DOI

10.2307/2373154. MR173222

[20] Sebastian Helmensdorfer, A model for the behavior of fluid droplets based on mean curvature flow,

SIAM J. Math. Anal. 44 (2012), no. 3, 1359–1371, DOI 10.1137/110824905. MR2982716
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