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Abstract. In 1951, H. Hopf proved that the only surfaces, homeomorphic to the sphere,

with constant mean curvature in the Euclidean space are the round (geometrical) spheres.

In this paper we survey some contributions of Renato Tribuzy to generalize Hopf’s result

as well as some recent results of the authors using these techniques for shrinking soli-

tons of curvature flows and for surfaces in three-dimensional warped product manifolds,

specially the de Sitter-Schwarzschild and Reissner-Nordstrom manifolds.

1. Introduction and Tribuzy’s contributions

In 1951, H. Hopf, see [44] and [45], proved that the only surfaces with constant mean

curvature in R3, homeomorphic to the sphere, are the round spheres. Hopf gave two

different proofs of this result. In the first proof, one considers the second fundamental form

II in isothermal parameters and takes the (2, 0)-component of II, i.e., II(2,0) = (1/2)Pdz2.

It can be shown that the complex function P vanishes precisely at the umbilical points of

Σ and it is holomorphic if and only if the mean curvature of Σ is constant. It is also seen

that the quadratic form II(2,0) does not depend on the parameter z; hence, it is globally

defined on Σ. It is a known theorem on Riemann surfaces that if the genus g of Σ is zero,

any holomorphic quadratic form vanishes identically. Then P = 0, i.e., all points of Σ

are umbilic, and hence Σ is a standard sphere. His second proof is based on the lines of

curvature. The quadratic equation Im(Pdz2) = 0 determines two fields of directions (the

principal directions), whose singularities are the zeroes of P . Since P is holomorphic, if
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z0 is a zero of P , either P = 0 in a neighborhood V of z0 or

(1.1) P (z) = (z − z0)khk(z), z ∈ V, k ≥ 1,

where hk is a function of z with hk(z0) 6= 0, see for example [51], p. 208-209. This

number k is called the order of the zero. In particular, if P is not identically zero in a

neighborhood of z0, then z0 is an isolated singularity of the field of directions with index

−k/2. Since Σ has genus zero, by the Poincaré index theorem, the sum of the indices

of all singularities for any field of directions is two (hence positive). This lead us to a

contradiction, and thus P is identically zero.

In 1933, Carleman [25] was the first to observe that this property holds for non-analytic

smooth functions which satisfies some first order partial differential equation. In fact, he

proved that a solution h : U ⊂ C→ C of

∂h

∂z̄
= ah+ bh̄,

does not admits a zero of infinite order except if h = 0. Here bars mean complex conjugate

and a, b are continuous complex functions. Notice that, if a = b = 0, then h is holomorphic.

Using these ideas, Hartman and Wintner, see [43] and [42], and Chern, see [28], proved

their well known results on the classification of special Weingarten surfaces.

Following the ideas of Chern, in 1987 [35] (see also [36]), Eschenburg and Tribuzy proved

the following result:

Theorem 1.1 (Eschenburg-Tribuzy). Let h : U ⊂ C→ C be a complex function defined

in an open set U of the complex plane. Assume that

(1.2)

∣∣∣∣∂h∂z̄
∣∣∣∣ ≤ ϕ(z)|h(z)|

where ϕ is a Lp, p > 2, non-negative real function. Assume further that z = z0 ∈ U is a

zero of h. Then either h ≡ 0 in a neighborhood V ⊂ U of z0, or

h(z) = (z − z0)khk(z), z ∈ V, k ≥ 1,

where hk(z) is a continuous function with hk(z0) 6= 0.

Remark 1.1. Eschenburg and Tribuzy called inequality (1.3) the Cauchy-Riemann in-

equality.



HOPF TYPE THEOREMS IN RIEMANNIAN MANIFOLDS 3

By using this result, Eschenburg and Tribuzy extended the result of Hopf in the fol-

lowing way:

Theorem 1.2 (Eschenburg-Tribuzy). Let Q3
c be a three-dimensional Riemannian man-

ifold with constant sectional curvature c ∈ R. Let X : Σ → Q3
c be an immersed surface

with mean curvature function H. Assume that Σ is homeomorphic to the sphere. If there

exists a locally Lp, p > 2, function f : Σ→ R such that

(1.3) |dH| ≤ f
√
H2 −K + c,

where K is the Gaussian curvature of Σ, then X(Σ) is totally umbilical.

The idea behind the proof is that the Hopf quadratic differential on an immersed sphere

vanishes when the mean curvature is constant, and by definition of the Hopf differential

its zeroes are umbilical points of the surface. Thus the immersed sphere is umbilical.

When the mean curvature satisfies a Cauchy-Riemann inequality, then the zeros of the

Hopf differential are all isolated and of negative index, or every point is a a zero of the

Hopf form. This index is with respect to the two eigendirection lines at the points where

the Hopf form is non zero. Since the sum of the indices of the zeros (when they are

all isolated) is positive, the Hopf form must vanish on the surface. Thus each point is

umbilical.

When an immersed sphere in M = S2×R or M = H2×R has constant mean curvature,

Abresch and Rosenberg, see [1], found a holomorphic quadratic differential Q on the

surface generalizing the Hopf differential, that has the property that when it vanishes

on the surface, then the sphere must be a rotationally invariant surface in M (umbilical

only when the surface is a slice, where the mean curvature is zero). This differential

was found by calculating the second fundamental form of the rotational examples and

making a simple modification of the Hopf form to find a quadratic form that vanishes on

the rotational surfaces and that characterizes the rotational surfaces, i.e., when the form

vanishes on an immersed surface, then the surface is indeed rotational.

To weaken the hypothesis of constant mean curvature, Alencar, do Carmo, and Tribuzy

found in [4] a Cauchy-Riemann inequality involving the differential Q. This implies the

zeros of Q satisfy the same conditions as that of the Hopf form in the previous paragraph.

Here the index of an isolated zero of Q is with respect to the two eigendirections of Q at

a non zero point. Since the sum of the indices of the isolated zeros would be positive, Q
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must vanish identically. Then one applies the theorem of Abresch-Rosenberg to conclude

it is rotational. Namely, they obtained

Theorem 1.3 (Alencar-do Carmo-Tribuzy, 2007). Let Σ be a compact immersed surface

of genus zero in H2 × R or S2 × R. Assume that

|dH| ≤ ϕ|Q(2,0)|,

where |dH| is the norm of the differential dH of the mean curvature H of Σ, Q(2,0) is

the (2, 0)-part of the Abresch-Rosenberg quadratic differential, and ϕ is a continuous,

non-negative real function. Then Q(2,0) is identically zero, and Σ is an embedded surface

invariant by rotations in H2 × R or S2 × R.

In [5], the first author, do Carmo and Tribuzy generalized the Abresch-Rosenberg qua-

dratic differential to higher-codimensions and, using Theorem 1.2, the index argument

explained earlier, and some arguments of reduction of codimension, as Theorem 4 of [58],

they were able to prove

Theorem 1.4 (Alencar-do Carmo-Tribuzy, 2010). Let Σ be a compact surface of genus

zero and let x : Σ→ En
c × R, n ≥ 2, be an immersion of Σ with parallel mean curvature,

where En
c is a space form of constant sectional curvature c ∈ R. Then, one of the following

assertions holds:

1) x(Σ) is a minimal surface of a totally umbilical hypersurface of En
c ;

2) x(Σ) is a standard sphere of a totally umbilical 3-dimensional submanifold of En
c ;

3) x(Σ) is a standard sphere of E3
c ;

4) x(Σ) lies in E4
c×R ⊂ R6 (possibly with the Lorentz metric), and there exists a plane

P such that x(Σ) is invariant for rotations which fix its orthogonal complement.

Furthermore, the level curves of the height function p 7→ 〈x(p), ξ〉 are circles lying

in planes parallel to P . Here, ξ is the direction vector of the R component of

En
c × R.

To conclude the list results with the contribution of Renato Tribuzy in this subject,

we can also cite the result of the first author, do Carmo, Fernandez and Tribuzy [3].

They generalized the Abresch-Rosenberg quadratic differential for three-dimensional sim-

ply connected homogeneous spaces with four dimensional isometry group E3(κ, τ). By

using Theorem 1.2 and an argument analogous to the proof of Theorem 1.3, they proved
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Theorem 1.5 (Alencar-do Carmo-Fernandez-Tribuzy, 2007). Let Σ be a compact surface

of genus zero immersed in E3(κ, τ). Assume that

|dH| ≤ ϕ|Q(2,0)|,

where ϕ is a non-negative real continuous function and Q(2,0) is the (2, 0) part of the

generalized Abresch-Rosenberg quadratic differential in E3(κ, τ). Then Q(2,0) is identically

zero and, by [2], Σ is a constant mean curvature surface invariant by rotations in E3(κ, τ).

2. Weighted Riemannian manifolds

In this section, we present a generalization of Theorem 1.2 and its application to surfaces

in Rn with weighted measure as we define later. These results are the main results the

the paper [8] of the authors.

An immersion X : Σ → Rn of a two-dimensional surface Σ is called a self-shrinker for

the mean curvature flow if its mean curvature vector H satisfies the equation

H = −1

2
X⊥,

where X⊥ is the normal part of the position vector. Self-shrinkers are the self-similar

solutions of the mean curvature flow and many efforts were made in the last decades

in order to obtain examples of such surfaces and classify these surfaces under certain

geometrical restrictions. In particular, there is a problem to classify the sphere as the only

compact self-shrinker under some geometrical assumptions, as we can see, for example,

in [46], [30], [23], [47], [20], among others. In this spirit, the authors proved in [8] the

following result:

Theorem 2.1 (Theorem 1.2 of [8]). Let X : Σ→ R3 be an immersed self-shrinker homeo-

morphic to the sphere. If there exists a non-negative locally Lp function ϕ : Σ→ R, p > 2,

and a locally integrable function G : [0,∞) → [0,∞) satisfying lim supt→0G(t)/t < ∞,
such that

(2.1) (‖X‖2 − 4H2)H2 ≤ ϕ2G(‖Φ‖)2,

then X(Σ) is a round sphere of radius 2 and centered at the origin.

Here ‖Φ‖ denotes the matrix norm of Φ = A− (H/2)I, where A is the shape operator

of the second fundamental form of X, H is its non-normalized mean curvature, and I is

the identity operator of TΣ.
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Since the Hopf’s differential is not holomorphic for self-shrinkers, in order to prove

Theorem 2.1 we need some notion of weak holomorphy which can can be used for self-

shrinkers. This is given by the following result, which generalizes Theorem 1.2, also proved

by the authors in [8]:

Theorem 2.2 (Theorem 1.1 of [8]). Let h : U ⊂ C → C be a complex function defined

in an open set U of the complex plane and z = z0 ∈ U be a zero of h. If there exists

ϕ ∈ Lploc(U), p > 2, a non-negative real function such that

(2.2)

∣∣∣∣∂h∂z̄
∣∣∣∣ ≤ ϕ(z)G(|h(z)|),

where G : [0,∞)→ [0,∞) is a locally integrable function such that

lim sup
t→0+

G(t)

t
<∞,

then either h = 0 in a neighborhood V ⊂ U of z0, or

(2.3) h(z) = (z − z0)khk(z), z ∈ V, k ≥ 1,

where hk(z) is a continuous function with hk(z0) 6= 0.

Theorem 2.2 has the following immediate consequence:

Corollary 2.1. Let h : U ⊂ C→ C be a complex function defined in an open set U of the

complex plane. If (2.2) holds, then on each connected components of U which contains a

zero of h, either h ≡ 0 or the zeroes of h are isolated.

Remark 2.1. The case when ϕ = 0 is equivalent to that h is holomorphic. The case when

G(t) = t and ϕ is continuous, Theorem 2.2 is the Main Lemma in [4] which implies Chern’s

Lemma in [28]. Theorem 2.2 also implies Lemma 2.3, p. 154, of [36]. There are many

functions satisfying the condition lim supt→0G(t)/t < ∞. In fact, if G is a continuous

function such that G(0) = 0, then lim supt→0G(t)/t = G′(0), if it exists. Moreover, if G

is any convex function with G(0) = 0, then G(t)/t ≤ G(1) for small 0 < t < 1, which

implies that convex functions also satisfy the condition. In particular, the functions

G(t) = tα, α ≥ 1, satisfy the condition. On the other hand, there are concave functions

which satisfy this condition, for example G(t) = sin t, 0 ≤ t ≤ π/2.
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Theorem 2.1 is a consequence of the more general result Theorem 2.3, p.8, which holds

for parallel weighted mean curvature surfaces in R2+m, m ≥ 1, where the weight is a radial

function (i.e., which depends only on the distance of the point to the origin). In order to

state this result, we shall need to give a brief introduction to weighted geometry in Rn. We

refer, for example, [27] for a more detailed exposition. We call (Rn, 〈·, ·〉, e−f ) a weighted

Riemannian manifold if it has a weighted measure dVf = e−fdV, where f : Rn → R is a

function of class C2. Let X : Σ → Rn be an immersion of a surface Σ. Consider Σ with

the weighted measure

dΣf = e−fdΣ,

and the induced metric 〈·, ·〉.
The first variation of the weighted volume Vf (Σ) =

´
Σ
e−fdΣ is given by

d

dt
Vf (Σt)

∣∣∣∣
t=0

= −
ˆ

Σ

〈T⊥,Hf〉e−fdΣ,

where T is a compactly supported variational vector field on Σ and

(2.4) Hf = H + (∇f)⊥

is the weighted mean curvature vector of Σ in Rn. Here (∇f)⊥ denotes the part of the

gradient ∇f of f in Rn normal to Σ and H denotes the non-normalized mean curvature

vector of Σ in Rn, i.e., the trace of the operator

B(Z,W ) = ∇ZW −∇Σ
ZW,

where ∇ and ∇Σ denote the connections of Rn and Σ, respectively.

We say that a surface Σ has parallel weighted mean curvature if Hf is parallel in the

normal bundle, i.e., ∇⊥Hf = 0. In particular, if Hf = 0, we say that Σ is f -minimal.

In the case that f(X) = ‖X‖2/4, we call the weighted manifold

(Rn, 〈·, ·〉, e−‖X‖2/4) the Gaussian space. Notice that self-shrinkers are f -minimal surfaces

in the Gaussian space.

If the codimension is one, the parallel weighted mean curvature surfaces in the Gaussian

space are called λ-surfaces. By using (2.4), we can see that λ-surfaces are characterized

by the equation

λ = H +
1

2
〈X,N〉,

where λ ∈ R, N is the unit normal vector field of the immersion, and H is its mean

curvature, i.e., H = HN. Observe that self-shrinkers of R3 are also λ-surfaces for λ = 0.
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For each point p ∈ Σ we can take isothermal parameters u and v in a neighborhood of

p, i.e.,

ds2 = α(u, v)(du2 + dv2),

where ds2 is the metric of Σ and α(u, v) is a positive smooth function on Σ. Complexifying

the parameters by taking z = u + iv, we can identify Σ with a subset of C. In this case,

we have

〈Xz, Xz̄〉 =
α(z)

2
and ds2 = α(z)|dz|2.

The immersion X satisfies the equations

(2.5)


∇XzXz =

αz
α
Xz +B(Xz, Xz),

∇Xz̄Xz =
α

4
H,

∇Xz̄Xz̄ =
αz̄
α
Xz̄ +B(Xz̄, Xz̄),

and, for any ν ∈ TΣ⊥,

(2.6)


∇Xzν = −1

2
〈H, ν〉Xz −

2

α
〈B(Xz, Xz), ν〉Xz̄ +∇⊥Xzν

∇Xz̄ν = − 2

α
〈B(Xz̄, Xz̄), ν〉Xz −

1

2
〈H, ν〉Xz̄ +∇⊥Xz̄ν,

where ∇⊥ is the connection of the normal bundle TΣ⊥.

Let us denote by

P νdz2 = 〈B(Xz, Xz), ν〉dz2

the (2, 0)-part of the second fundamental form of Σ in Rn relative to the normal ν ∈ TΣ⊥.

This quadratic form is also called the Hopf quadratic differential.

The follolwing theorem, which was proven in [8], is a rigidity result for parallel weighted

mean curvature Hf surfaces in the Euclidean space with arbitrary codimension and radial

weight f(X) = F (‖X‖2), where F : R → R is a function of class C2. Since the codi-

mension can be arbitrary large, we assume that X(Σ) does not lie in any proper affine

subspace of the Euclidean space.

Theorem 2.3. Let X : Σ→ R2+m, m ≥ 1, be an immersion of a surface homeomorphic

to the sphere. Assume that all the following assertions holds:

i) X has parallel weighted mean curvature Hf , i.e., ∇⊥Hf = 0, for a radial weight

f(X) = F (‖X‖2), where F : R→ R is a function of class C2.

ii) There exists a unitary normal vector field ν ∈ TΣ⊥ such that ∇⊥ν = 0.
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iii) There exists a non-negative locally Lp function ϕ : Σ → R, p > 2, and a locally

integrable function G : [0,∞) → [0,∞) satisfying lim supt→0G(t)/t < ∞, such

that

(2.7)

∣∣F ′(‖X‖2)〈Hf , ν〉 − 2
[
2F ′′(‖X‖2) + (F ′(‖X‖2))2

]
〈X, ν〉| ‖X>‖

≤ ϕG(‖Φν‖).

Then X(Σ) is contained in a round hypersphere of R2+m. Moreover, if H 6= 0 and ν =

H/‖H‖, then X(Σ) is a minimal surface of a round hypersphere of R2+m or it is a round

sphere in R2+m.

Here X> denotes the component of X tangent to TΣ, ‖Φν‖ denotes the matrix norm of

Φν = Aν − (traceAν/2)I, where Aν is the shape operator of the second fundamental form

of X relative to ν, traceAν is its trace, and I : TΣ→ TΣ is the identity operator.

The ideia of the proof is to apply the Cauchy-Riemann inequality of Theorem 2.2, to

the quadratic differential Qν = e−
1
2
fP ν and conclude that P ν , is identically zero in a

neighborhood V of a zero z0 or this zero is isolated and the index of a direction field

determined by Im[P νdz2] = 0 is negative. If, for some coordinate neighborhood V of

zero, P ν = 0, this holds for the whole Σ. Otherwise, the zeroes on the boundary of V

will contradict to Theorem 2.2. So if P ν is not identically zero, all zeroes, if any, are

isolated and have negative indices. This implies that the sum of all indexes of the isolated

zeroes are negative (if there are zeroes) or zero (if there are no zeroes). Since Σ has genus

zero, by the Poincaré index theorem the sum of the indices of the singularities of any

field of directions is 2 (hence positive). This contradiction shows that P ν is identically

zero. This implies that Aν = µI, i.e., ν is a umbilical normal direction of X. We then

prove that µ must be constant and, since X(Σ) does not lies in a hyperplane, we conclude

that µ 6= 0 and X(Σ) lies in a hypersphere of R2+m. This fact comes from Yau [58] (see

Theorem 1, p.351-352) and Chen-Yano[26] (see Theorem 3.3, p.472-473). Moreover, if H

and ν = H/‖H‖, then X(Σ) is a minimal surface of a hypersphere of R2+m. This comes

from Theorem 2, p.117, of the work of Ferus [37].

In the case when Σ is f -minimal, i.e., Hf = 0, and the weight f(X) = F (‖X‖2) satisfies

F ′(t) 6= 0 and 2F ′′(t) + (F ′(t))2 6= 0, for every t ∈ R, t ≥ 0, the next result follows from

Theorem 2.3.
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Corollary 2.2. Let X : Σ→ R2+m, m ≥ 1, be an immersion of a surface homeomorphic

to the sphere. Assume that all the following assertions holds:

i) X is f -minimal, i.e., Hf = 0, for a radial weight f(X) = F (‖X‖2), where F :

R → R is a function of class C2 such that F ′(t) 6= 0 and 2F ′′(t) + (F ′(t))2 6= 0,

for every t ∈ R, t ≥ 0.

ii) There exists an unitary normal vector field ν ∈ TΣ⊥ such that ∇⊥ν = 0.

iii) There exists a non-negative locally Lp function ϕ : Σ → R, p > 2, and a locally

integrable function G : [0,∞) → [0,∞) satisfying lim supt→0G(t)/t < ∞, such

that

(2.8)

(
‖X‖2 −

(
‖H‖

2F ′(‖X‖2)

)2
)(

|〈H, ν〉|
2F ′(‖X‖2)

)2

≤ ϕ2G(‖Φν‖)2.

Then X(Σ) is contained in a round hypersphere of R2+m of radius R, where R is the

solution of the equation

F ′(R2)R2 = 1,

and centered at the origin. Moreover, if H 6= 0 and ν = H/‖H‖, then X(Σ) is a minimal

surface of a round hypersphere of R2+m with the same properties.

Here ‖Φν‖ is the matrix norm of Φν = Aν − (traceAν/2)I, where Aν is the shape

operator of the second fundamental form of X relative to ν, traceAν is its trace, and

I : TΣ→ TΣ is the identity operator.

Since self-shrinkers are f -minimal surfaces for the weight f(X) = ‖X‖2
4
, applying Corol-

lary 2.2 to F (t) = t/4, we obtain

Corollary 2.3. Let X : Σ→ R2+m, m ≥ 1, be an immersed self-shrinker homeomorphic

to the sphere. Assume there exists an unitary normal vector field ν ∈ TΣ⊥ such that

∇⊥ν = 0. If there exists a non-negative locally Lp function ϕ : Σ → R, p > 2, and a

locally integrable function G : [0,∞) → [0,∞) satisfying lim supt→0G(t)/t < ∞, such

that (
‖X‖2 − 4‖H‖2

)
|〈H, ν〉|2 ≤ ϕ2G(‖Φν‖)2,

then X(Σ) is contained in a round hypersphere of R2+m of radius 2 and centered at the

origin.
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Here ‖Φν‖ is the matrix norm of Φν = Aν − (traceAν/2)I, where Aν is the shape

operator of the second fundamental form of X relative to ν, traceAν is its trace, and

I : TΣ→ TΣ is the identity operator.

If we consider the case of codimension one in Corollary 2.3, then we obtain Theorem

2.1:

Corollary 2.4 (Theorem 2.1). Let X : Σ→ R3 be an immersed self-shrinker homeomor-

phic to the sphere. If there exists a non-negative locally Lp function ϕ : Σ → R, p > 2,

and a locally integrable function G : [0,∞) → [0,∞) satisfying lim supt→0G(t)/t < ∞,
such that

(‖X‖2 − 4H2)H2 ≤ ϕ2G(‖Φ‖)2,

then X(Σ) is a round sphere of radius 2 and centered at the origin.

Here ‖Φ‖ denotes the matrix norm of Φ = A− (H/2)I, where A is the shape operator

of the second fundamental form of X, H is its non-normalized mean curvature, and I is

the identity operator of TΣ.

For surfaces with parallel weighted mean curvature in the Gaussian space, we have

Corollary 2.5. Let X : Σ → (R2+m, 〈·, ·〉, e−‖X‖2/4), m ≥ 1, be an immersion of a

surface homeomorphic to the sphere into the Gaussian space. Assume that all the following

assertions holds:

i) X has parallel weighted mean curvature Hf , i.e., ∇⊥Hf = 0.

ii) There exists an unitary normal vector field ν ∈ TΣ⊥ such that ∇⊥ν = 0.

iii) There exists a non-negative locally Lp function ϕ : Σ → R, p > 2, and a locally

integrable function G : [0,∞) → [0,∞) satisfying lim supt→0G(t)/t < ∞, such

that

(2.9) (‖X‖2 − 4‖Hf −H‖2)〈H, ν〉2 ≤ ϕ2G(‖Φν‖)2,

Then X(Σ) is contained in a round hypersphere of R2+m. Moreover, if H 6= 0 and

ν = H/‖H‖, then X(Σ) is a minimal surface of a round hypersphere of R2+m of radius√
〈Hf , ν〉2 + 4− 〈Hf , ν〉.
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Here ‖Φν‖ is the matrix norm of Φν = Aν − (traceAν/2)I, where Aν is the shape

operator of the second fundamental form of X relative to ν, traceAν is its trace, and

I : TΣ→ TΣ is the identity operator.

In particular, for λ-surfaces, we obtain

Corollary 2.6. Let X : Σ→ R3 be a immersed λ-surface homeomorphic to the sphere. If

there exists a non-negative locally Lp function ϕ : Σ→ R, p > 2, and a locally integrable

function G : [0,∞)→ [0,∞) satisfying lim supt→0G(t)/t <∞, such that(
‖X‖2 − 4(λ−H)2

)
H2 ≤ ϕ2G(‖Φ‖)2,

then X(Σ) is a round sphere of radius
√
λ2 + 4− λ and center at the origin.

Here ‖Φ‖ denotes the matrix norm of Φ = A− (H/2)I, where A is the shape operator

of the second fundamental form of X, H is its non-normalized mean curvature, and I is

the identity operator of TΣ.

Remark 2.2. In the proof of Corollary 2.5, since the codimension can be m ≥ 2, we have

that the spheres ‖X‖2 = constant and S1+m(x0, R) could be different. In this case we

will have

X(Σ) ⊂ S1+m(x0, R) ∩ S1+m(0, ‖X‖),

where this intersection is, by its turn, a m-dimensional sphere.

3. Self-shrinkers of extrinsic curvature flows

In this section, we continue the work done in [8] presenting results in the same spirit

of Theorem 2.1 to other famous curvature flows, as the flow by the powers of Gaussian

curvature K, the flow by the powers of the harmonic mean curvature K/H and the flow

by the powers of the mean curvature H. All these flows can be seen as particular cases

of the general curvature flow, as follows.

Given a initial immersion X0 : Σ → R3 of a two-dimensional surface, we say that the

evolution of X0(Σ) by the curvature is a smooth one-parameter family of immersions

X : Σ× [0, T )→ R3 satisfying the initial value problem

(3.1)


∂X

∂t
= W (k1, k2)N,

X(·, 0) = X0,
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where k1 and k2 are the principal curvatures of the immersions X, N is their unitary

normal vector fields, and W ∈ C1(R2). It is known this flow will be parabolic if and only

if

(3.2)
∂W

∂k1

· ∂W
∂k2

> 0.

The more important curvature flows are those whose function W is a combination of

the mean curvature H = k1 + k2 and the Gaussian curvature K = k1k2. Among these

we can cite the mean curvature flow, for W (k1, k2) = H, the Gaussian curvature flow

W (k1, k2) = K, and the harmonic curvature flow, for W (k1, k2) = K/H. These curvature

flows has been studied by many authors in the last three decades, see [39], [56], [57], [11],

[12], [15], [16], [48] and references therein.

In the study the curvature flows, the self-similar solutions play an important role since

its was proved that, under some convexity conditions, the solutions of the flow, when

suitably normalized, converge to a self-similar solution. A solution of the curvature flow

(3.1) is said self-similar if each Σt = X(Σ, t) is an homothety, or a translation, or even a

rotation of Σ0 = X0(Σ). The homothetic self-similar solutions are said self-shrinkers (or

shrinking self-similar solutions, or shrinking homothetic solutions) if the solution shrinks

homothetically from Σ0.

If W is a homogeneous function of degree β > 0, i.e., W (ak1, ak2) = aβW (k1, k2), a > 0,

then it can be proved that a shrinking self-similar solution of a curvature flow satisfies

the equation

(3.3) W (k1, k2) = −λ〈X,N〉, λ ∈ (0,∞).

Changing the variables x1 = k1 + k2 and x2 = (k1 − k2)2 we can write

(3.4) W (k1, k2) = Ψ(x1, x2) = Ψ(k1 + k2, (k1 − k2)2) = Ψ(H,H2 − 4K),

where K = k1k2 is the Gaussian curvature of the immersion X and H = k1 + k2 is its

mean curvature. Therefore, the equation (3.3) becomes

(3.5) Ψ(H,H2 − 4K) = −λ〈X,N〉, λ ∈ (0,∞).

The main result in this subject is the following

Theorem 3.1 (Alencar-Silva Neto-Zhou). Let X : Σ→ R3 be a closed, immersed surface

of genus zero satisfying (3.5), where Ψ : R × [0,+∞) → R is a C1 function satisfying
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∂Ψ
∂x1
6= 0. If there exists a non-negative function ϕ ∈ Lp(Σ), p > 2, and a locally integrable

function G : [0,∞)→ [0,∞) satisfying lim supt→0G(t)/t <∞, such that

(3.6) H2(‖X‖2 − 〈X,N〉2) ≤ ϕ2G(‖Φ‖)2,

then X(Σ) is a round sphere centered at the origin and radius satisfying the equation

λR = Ψ

(
2

R
, 0

)
.

Here ‖Φ‖ denotes the matrix norm of Φ = A− (H/2)I, where A is the shape operator of

the second fundamental form of X, H is its non-normalized mean curvature, and I is the

identity operator of TΣ.

Remark 3.1. Theorem 3.1 cannot be derived from Theorem 2.3 of the previous section

since the only curvature flow that can be expressed using weighted geometry is the mean

curvature flow.

Remark 3.2. Since the function ϕ is assumed to be only Lp, it is allowed to be infinity in

some points. In particular, it is possible to have

lim
p→p0

ϕ(p)G(‖Φ(p)‖) > 0

for umbilical points p0 ∈ Σ despite G(‖Φ(p0)‖) = G(0) = 0. Therefore, the inequality

(3.6) does not imply necessarily that H2(‖X‖2 − 〈X,N〉2) = 0 at umbilical points.

Remark 3.3. Notice that, since H2 − 4K = (k1 − k2)2 ≥ 0, the inequality

K ≤ 1

4
H2

holds for every surface in R3. As it was shown in the Remark 1.4 of [8], inequality (3.6)

gives the existence of a function ψ, which can be chosen satisfying ψ2 < ε for every given

ε > 0 arbitrarily small, such that 1/ψ ∈ Lp(Σ), p > 2, and

K ≤ 1

4
(1− ψ2)H2.

Remark 3.4. The hypothesis (3.6) of Theorem 3.1 is necessary. In fact, we prove in [7]

that, if there exists non-spherical genus zero rotational surface which is the solution of

(3.5), then (3.6) does not hold.
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Remark 3.5. The function W (k1, k2) is homogeneous of degree β ∈ R, if and only if the

function Ψ satisfies

(3.7) Ψ(ax1, a
2x2) = aβΨ(x1, x2), a > 0.

By an abuse of notation, we will call Ψ a homogeneous function of degree β ∈ R if Ψ

satisfies (3.7). If Ψ is homogeneous of degree β 6= −1 with Ψ(1, 0) > 0, and λ > 0, then

the radius of the sphere of Theorem 3.1 is given by

R =
[
λ−12βΨ(1, 0)

] 1
β+1 .

Remark 3.6. The flow (3.1) is a (weakly) parabolic equation if and only if

∂W

∂k1

· ∂W
∂k2

> 0 (≥ 0),

or equivalently (
∂Ψ

∂x1

)2

− 4x2

(
∂Ψ

∂x2

)2

> 0 (≥ 0).

Notice the hypothesis ∂Ψ
∂x1
6= 0 of Theorem 3.1 assures the parabolicity of the flow near

the umbilical points (x2 = 0), but this result holds even when the flow is not parabolic.

Our first consequence is for the α-mean curvature flow, α ∈ R\{0, 1},

∂X

∂t
= HαN.

This flow is parabolic for H > 0. The case when α = 1 is the so called mean curvature

flow, which is parabolic without any additional assumption. This case was dealt by the

authors in [8].

Schulze, see [53], proved that closed (weakly) convex hypersurfaces of Rn+1 converges

to a point if α ∈ (0, 1) (α ≥ 1) and Schnürer, see [52], and Schulze, see [54], proved that

closed convex surfaces of R3 converges to a round point for 1 ≤ α ≤ 5. For general speeds

of higher homogeneity, Andrews, see [16], proved that the flow of a closed convex surface

converges to a round point provided it satisfies an initial pinching condition.

The shrinking self-similar solutions of the α-mean curvature flow satisfy the equation

Hα = −λ〈X,N〉, λ ∈ (0,∞).

Our result characterizes the sphere as the only mean convex (i.e., H 6= 0), genus zero,

closed shrinking self-similar solution of the α-mean curvature flow under an upper pinching
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curvature condition. Notice that the mean convex assumption is weaker than convexity,

since mean convexity admits immersed surfaces and surfaces with K ≤ 0.

Corollary 3.1. Let X : Σ → R3 be a closed, homeomorphic to the sphere, immersed,

mean convex, two-dimensional shrinking self-similar solution of the α-mean curvature

flow, for α ∈ R\{−1, 0, 1}. If there exists a non-negative function ϕ ∈ Lp(Σ), p > 2, and

a locally integrable function G : [0,∞) → [0,∞) satisfying lim supt→0G(t)/t < ∞, such

that

(3.8) H2(‖X‖2 − 〈X,N〉2) ≤ ϕ2G(‖Φ‖)2,

then X(Σ) is a round sphere of radius (2αλ−1)
1

α+1 and center at the origin.

Here ‖Φ‖ denotes the matrix norm of Φ = A− (H/2)I, where A is the shape operator

of the second fundamental form of X, H is its non-normalized mean curvature, and I is

the identity operator of TΣ.

Remark 3.7. If α = m
2n−1

∈ (0, 1), n,m ∈ N, then the hypothesis of mean convexity in

Corollary 3.1 is not necessary. Notice that in this case the flow is only weakly parabolic,

becoming degenerate for the points when H = 0.

Remark 3.8. Drugan, Lee and Wheeler [34] proved that the spheres are the only closed

self-shrinkers for the inverse mean curvature flow (i.e., for α = −1) without any additional

assumption, solving the problem in this case.

The next application of Theorem 3.1 is for the α-harmonic mean curvature flow

∂X

∂t
=

(
K

H

)α
N,

whose shrinking self-similar solitons satisfy the equation(
K

H

)α
= −λ〈X,N〉, λ ∈ (0,∞).

If α ∈ (0,∞), then this flow is (weakly) parabolic for (weakly) convex surfaces, being

degenerate for the points where K = 0. If we consider values of α such that K can assume

negative values, as α = m
2n−1

, m, n ∈ N, including the classical case of α = 1, then the

flow is weakly parabolic for every surface, being degenerate for the points where K = 0

and singular for the points where H = 0.
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For α = 1, the existence of solutions for closed convex surfaces as initial data was

proved by Andrews, see [11], who also showed that closed convex surfaces flowing by the

harmonic mean curvature converges to a round point in finite time (in fact, the result of

Andrews holds for a more wide class of degree one homogeneous functions W ). Dieter,

see [33], studied the convergence of the flow for the degenerate case K ≥ 0 and H > 0,

Caputo and Daskalopoulos, see [24], and Daskalopoulos and Sesum, see [32], studied the

highly degenerate case, where K and H can be simultaneously zero. The case when K < 0

and H < 0 was studied by Daskalopoulos and Hamilton, see [31].

For α ∈ (0, 1), Anada, see [9], proved the existence of non-round closed convex self-

similar solutions of the α-harmonic mean curvature flow. After this findings, in a joint

work with Tsutsumi, see [10], he also investigated sufficient conditions for the α-mean

curvature flows converge to a round point.

Our result gives conditions for a closed, mean convex, self-similar solution with genus

zero of the m
2n−1

-harmonic mean curvature flow to be a sphere. We remark here that the

powers m
2n−1

,m, n ∈ N, allows us to work with surfaces such that K < 0 at some points,

but our technique holds for every α ∈ (0, 1], if we assume that Σ is weakly convex.

Corollary 3.2. Let X : Σ → R3 be a closed, homeomorphic to the sphere, immersed,

mean convex, two-dimensional shrinking self-similar solution of the α-harmonic mean

curvature flow for α = m
2n−1

, where m,n ∈ N and m
2n−1

≤ 1. If there exists a non-negative

function ϕ ∈ Lp(Σ), p > 2, and a locally integrable function G : [0,∞)→ [0,∞) satisfying

lim supt→0G(t)/t <∞, such that

(3.9) H2(‖X‖2 − 〈X,N〉2) ≤ ϕ2G(‖Φ‖)2,

then X(Σ) is a round sphere of radius (2
m

2n−1λ)−
2n−1

m−2n+1 , centered at the origin, if (m,n) 6=
(1, 1), and for any radius R > 0, centered at the origin, with λ = 1

2
, if (m,n) = (1, 1).

Here ‖Φ‖ denotes the matrix norm of Φ = A− (H/2)I, where A is the shape operator

of the second fundamental form of X, H is its non-normalized mean curvature, and I is

the identity operator of TΣ.

The last classical flow we will discuss here and obtain consequences of Theorem 3.1 is

the α-Gaussian curvature flow

∂X

∂t
= KαN,
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whose shrinking self-similar solutions satisfy the equation

Kα = −λ〈X,N〉, λ ∈ (0,∞).

This flow is (weakly) parabolic if K > 0 (K ≥ 0), being degenerate for the points where

K = 0.

When α = 1, this flow is called Gaussian curvature flow, and was first introduced by

Firey in 1974, see [38], as a model of the wearing process of convex rolling stones on a

beach. He proved also that closed convex surfaces under this flow converges to a round

point when the initial surface is symmetric about the origin. Tso, see [55], for α = 1,

and Chow, see [29], for α = 1/n, proved the convergence to a point of a closed convex

hypersurfaces of Rn+1 under the flow. Andrews, see [13], proved that, for α = 1/(n+ 2),

closed convex hypersurfaces evolving under the flow converges to an ellipsoid. We observe

that Calabi, see [22], early proved that the ellipsoids are the only closed hypersurfaces

satisfying the equation of the self-similar solutions of the 1
n+2

-Gaussian curvature flow.

The works of Andrews, see [14], [17], and Guan and Ni, see [41], proved that the flow

converges to a self-similar solution for every α ≥ 1/(n + 2). To conclude the analysis of

the case when α ≥ 1/(n+ 2), Brendle, Choi and Daskalopoulos, see [21], proved that the

only closed self-similar solutions of the α-Gaussian curvature flow for α > 1/(n + 2) are

the round spheres. In his turn, if α < 0, then Gerhardt, see [40], proved that the only

closed convex self-similar solution of the α-Gaussian curvature flow is a round sphere.

Moreover, he proved that the flow converges to a sphere after rescaling.

On the other hand, Andrews, see [14], proved the existence of non-spherical closed con-

vex self-similar solutions of the α-Gaussian curvature flow for small α > 0. In particular,

in dimension 2, for α ∈ (0, 1/10). This shows that if we want to characterize the sphere

as the only self-similar solution of the α-Gauss curvature flow for small values of α > 0,

then we will need some additional assumption.

Our result provides sufficient conditions for a self-similar solution of the α-Gaussian

curvature flow, α ∈ (0, 1/4), to be a round sphere.

Corollary 3.3. Let X : Σ → R3 be a closed, convex, two-dimensional shrinking self-

similar solution of the α−Gaussian curvature flow for α ∈ (0, 1/4). If there exists a non-

negative function ϕ ∈ Lp(Σ), p > 2, and a locally integrable function G : [0,∞)→ [0,∞)
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satisfying lim supt→0G(t)/t <∞, such that

(3.10) H2(‖X‖2 − 〈X,N〉2) ≤ ϕ2G(‖Φ‖)2

then X(Σ) is a round sphere of radius λ−
1

2α+1 and center at the origin.

Here ‖Φ‖ denotes the matrix norm of Φ = A− (H/2)I, where A is the shape operator

of the second fundamental form of X, H is its non-normalized mean curvature, and I is

the identity operator of TΣ.

Remark 3.9. Since there are examples of closed convex self-similar solutions of the α-

Gaussian curvature flow for α ∈ (0, 1/10), given by Andrews, see [14], at least in this

cases some additional hypothesis like (3.10) is necessary to obtain the conclusions of

Corollary 3.3.

Remark 3.10. Corollary 3.3 holds in a more general setting: if we choose values of α

which allows negative values of K, as for example α = m
2n−1

≤ 1, m, n ∈ N, then we can

assume only that Σ is a closed mean convex surface with genus zero to obtain the same

conclusion, despite the flow is not parabolic in this case.

In order to illustrate the scope of situations to which the Theorem 3.1 can be applied

in the context of the curvature flows, we give here a list of examples of homogeneous

functions W (k1, k2) such that the flow (3.1) is parabolic including negative values of K.

(i) W (k1, k2) = aH2 + bK, a, b ∈ R. The flow is parabolic for

K > −2a(2a+ b)

b2
H2.

In this case, ∂Ψ
∂x1
6= 0 if and only if H 6= 0, i.e., the surface is mean convex.

As a particular situation, we have W (k1, k2) = |A|2 = k2
1 + k2

2, by taking a = 1

and b = −2. In this case, the flow is parabolic for K > 0, i.e., for convex surfaces.

This flow was studied by Schnürer in [52].

(ii) W (k1, k2) = aH2α + bKα, a, b > 0, α = m
2n−1

≥ 1,m, n ∈ N. The flow is parabolic

for

4a2 + 2ab

(
K

H2

)α−1

+ b2

(
K

H2

)2α−1

> 0.

In this case, ∂Ψ
∂x1
6= 0 if and only if H 6= 0, i.e., the surface is mean convex.

(iii) W (k1, k2) = H
2
3 + bK

1
3 , b ∈ (0, 25/3). The flow is parabolic for K 6= 0 and H 6= 0.

In this case, ∂Ψ
∂x1
6= 0 everywhere and it is singular for K = 0 and H = 0.
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4. Warped product manifolds

In this section we present some results proved by the first and the second authors in

[6] which generalize the Eschenburg-Tribuzy theorem for the more general class of three-

dimensional Riemannian manifolds M3 = I ×S2, where I = (0, b) or I = (0,∞), with the

metric

(4.1) 〈·, ·〉 = dt2 + h(t)2dω2,

where h : I → R is a smooth function, called warping function, and dω2 denotes the

canonical metric of the 2-dimensional round sphere S2. With the metric (4.1), the product

M3 = I × S2 is called a warped product manifold and generalizes the space forms with

constant sectional curvature. In fact, the metrics of the space forms of constant sectional

curvature c ∈ R can be written in polar coordinates as in (4.1), where
h(t) = t for R3,

h(t) =
1√
c

sin(
√
ct) for S3(c),

h(t) =
1√
−c

sinh(
√
−ct) for H3(c).

The warped product manifold M3 has two different sectional curvatures which depend

only on the parameter t, one tangent to the slices {t}×S2, denoted by Ktan(t), and other

relative to the planes which contains the radial direction ∂t, which de denote by Krad(t).

In terms of the warping function, we can write

(4.2) Ktan(t) =
1− h′(t)2

h(t)2
and Krad(t) = −h

′′(t)

h(t)
.

These manifolds were first introduced by Bishop and O’ Neill in 1969, see [18], and is

having increasing importance due to its applications as model spaces in general relativity.

Part of these applications comes from the metrics which are solutions of the Einstein

equations, as the de Sitter-Schwarzschild metric and Reissner-Nordstrom metric, which

we introduce later.

Applying the Hopf differential to Theorem 1.1, the main result of this section is the

following generalization of Theorem 1.2 for a class of warped product manifolds which

contains the de Sitter-Schwarzschild and the Reissner-Nordstrom manifolds:
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Theorem 4.1 (Alencar-Silva Neto). Let Σ be a surface, homeomorphic to the sphere,

immersed in a warped product manifold M3 = I × S2, with mean curvature function H.

If there exists a non-negative Lp, p > 2, function f : Σ→ R such that

(4.3)
|dH + (Ktan(t)−Krad(t))νdt|

≤ f
√
H2 −K +Ktan(t)− (1− ν2)(Ktan(t)−Krad(t)),

then Σ is totally umbilical.

Moreover, if Ktan(t) 6= Krad(t), except possibly for a discrete set of values t ∈ I, and Σ

has constant mean curvature, then Σ is a slice.

Remark 4.1. Actually, some additional hypothesis as (4.3) is needed in order to classify

the slices as the only constant mean curvature spheres. In fact, it was observed by Brendle

(see [19], Theorem 1.5, p. 250) that a result of Pacard and Xu (see [49], Theorem 1.1, p.

276) implies that in some warped product manifolds there are small spheres with constant

mean curvature which are not umbilical.

Remark 4.2. To obtain the slice in the second part of Theorem 4.1, the assumption over

M3 that Ktan(t) 6= Krad(t), except possibly for a discrete set of values t ∈ I, is necessary.

In fact, if Ktan(t) = Krad(t) for some interval (t0, t1) ⊂ I, then all the sectional curvatures

of M3 will depend only on t. This will imply, by the classical Schur’s Theorem, that

M̃3 := (t0, t1) × S2 has constant sectional curvature. In this case, there exists spheres,

other than the slices, with constant mean curvature (in fact, the geodesic spheres centered

in some point of M̃3).

Two of the most famous examples of warped product manifolds are the de Sitter-

Schwarzschild manifolds and the Reissner-Nordstrom manifolds, which we describe below.

Definition 4.1 (The de Sitter-Schwarzschild manifolds). Let m > 0, c ∈ R, and

(s0, s1) = {r > 0; 1−mr−1 − cr2 > 0}.

If c ≤ 0, then s1 = ∞. If c > 0, assume that cm2 < 4
27
. The de Sitter-Schwarzschild

manifold is defined by M3(c) = (s0, s1)× S2 endowed with the metric

〈·, ·〉 =
1

1−mr−1 − cr2
dr2 + r2dω2.
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In order to write the metric in the form (4.1), define F : [s0, s1)→ R by

F ′(r) =
1√

1−mr−1 − cr2
, F (s0) = 0.

Taking t = F (r), we can write 〈·, ·〉 = dt2 + h(t)2dω2, where h : [0, F (s1)) → [s0, s1)

denotes the inverse function of F. The function h clearly satisfies

(4.4) h′(t) =
√

1−mh(t)−1 − ch(t)2, h(0) = s0, and h′(0) = 0.

For these manifolds, we have

Corollary 4.1 (The de Sitter-Schwarzschild manifolds). Let Σ be a surface, homeomor-

phic to the sphere, immersed in the de Sitter-Schwarzschild manifold, with constant mean

curvature. If there exists a non-negative Lp, p > 2, function f : Σ→ R such that

|dt| ≤ f

√
H2 −K + c+

m(3ν2 − 1)

2h(t)3
,

then Σ is a slice.

Here, K is the Gaussian curvature of Σ, ν = 〈∇t, N〉 is the angle function, and N is

the unitary normal vector field of Σ in the de Sitter-Schwarzschild manifold.

Definition 4.2 (The Reissner-Nordstrom manifolds). The Reissner- Nordstrom manifold

is defined by M3 = (s0,∞)× S2, with the metric

〈·, ·〉 =
1

1−mr−1 + q2r−2
dr2 + r2dω2,

where m > 2q > 0 and s0 = 2q2

m−
√
m2−4q2

is the larger of the two solutions of 1 −mr−1 +

q2r−2 = 0. In order to write the metric in the form (4.1), define F : [s0,∞)→ R by

F ′(r) =
1√

1−mr−1 + q2r−2
, F (s0) = 0.

Taking t = F (r), we can write 〈·, ·〉 = dt2 + h(t)2dω2, where h : [0,∞)→ [s0,∞) denotes

the inverse function of F. The function h clearly satisfies

(4.5) h′(t) =
√

1−mh(t)−1 + q2h(t)−2, h(0) = s0, and h′(0) = 0.

For these manifolds, we have
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Corollary 4.2 (The Reissner-Nordstrom manifolds). Let Σ be a surface, homeomorphic to

the sphere, immersed in the Reissner-Nordstrom manifold, with constant mean curvature.

If there exists a non-negative Lp, p > 2, function f : Σ→ R such that

|dt| ≤ f

√
H2 −K +

m(3ν2 − 1)

2h(t)3
+
q2(1− 2ν2)

h(t)4
,

then Σ is a slice.

Here, K is the Gaussian curvature of Σ, ν = 〈∇t, N〉 is the angle function, and N is

the unitary normal vector field of Σ in the Reissner-Nordstrom manifold.

Remark 4.3. Since the warped product manifold is smooth at t = 0 if and only if h(0) =

0, h′(0) = 1, and all the even order derivatives are zero at t = 0, i.e., h(2k)(0) = 0, k > 0,

see [50], Proposition 1, p. 13, we can see the de Sitter-Schwarzschild manifolds and the

Reissner-Nordstrom manifolds are singular at t = 0.
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[6] Hilário Alencar and Gregório Silva Neto, Hopf type theorems for surfaces in the de sitter-

schwarzschild and reissner-nordstrom manifolds, Preprint (2021).
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