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Abstract. This paper studies rigidity for immersed self-shrinkers of the mean curva-

ture flow of surfaces in the three-dimensional Euclidean space R3. We prove that an

immersed self-shrinker with finite L-index must be proper and of finite topology. As one

of consequences, there is no stable two-dimensional self-shrinker in R3 without assuming

properness. We conclude the paper by giving an affirmative answer to a question of

Mantegazza.

1. Introduction

A n-dimensional self-shrinker of the mean curvature flow in Rn+1 is a hypersurface Σ

which satisfies

H(x) =
1

2
〈x, ν(x)〉,

where H(x) is the mean curvature of Σ at x ∈ Σ and ν is its outward unitary normal

vector field. Here we are using the convention of [8] such that the mean curvature of a

n-dimensional round sphere of radius R is n/R, and H = traceA, where A(Y ) = ∇Y ν,

for Y ∈ TΣ, and ∇ is the connection of Rn+1.

Self-shrinkers are known as type I singularities of the mean curvature flow. They can

also be seen as the critical points of the weighted area functional

ˆ
Σ

e−
1
4
‖x‖2dΣ
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under all the compactly supported normal variations. Taking the second variation of the

weighted area functional, we obtain

d2

dt2

(ˆ
Σ

e−
1
4
‖x‖2dΣ

)∣∣∣∣
t=0

= −
ˆ

Σ

ξ

[
Lξ +

(
|A|2 +

1

2

)
ξ

]
e−

1
4
‖x‖2dΣ

=: −
ˆ

Σ

ξLξe−
1
4
‖x‖2dΣ

for every variation of the form ξν, where ξ is any smooth function with compact support.

Here Lξ = ∆ξ − 1
2
〈x,∇ξ〉 is the so called drifted Laplacian and Lξ = Lξ + (|A|2 + 1

2
)ξ.

We say that a complete self-shrinker is L-stable, if

d2

dt2

(ˆ
Σ

e−
1
4
‖x‖2dΣ

)∣∣∣∣
t=0

≥ 0

for all the compactly supported normal variations. We refer to Cheng, Mejia and the

third author, see [6], for the calculations and a more detailed discussion of this subject.

It was shown by Colding and Minicozzi (see Theorem 0.5 of [9]), that there is no L-stable

smooth complete n-dimensional self-shrinkers without boundary and with polynomial

volume growth in Rn+1. This non-existence result was extended to n-dimensional self-

shrinkers with sub exponential volume growth by Impera and Rimoldi, see [16]. Our first

result is to prove the volume growth hypothesis is not necessary for the two-dimensional

case:

Theorem 1.1. There is no complete L-stable two-dimensional self-shrinkers in R3.

Remark 1.1. It is natural to ask whether there exists self-shrinkers with volume growth

faster than polynomial. Halldorsson [14] proved the existence of complete self-shrinking

curves Γ contained in an annulus of R2 centered at the origin and which is dense in the

annulus. Since this self-shrinker is not proper, by the result of Cheng and the third author

[7], it has volume growth faster than polynomial. This implies that the cylinders Γ×Rn−1

are self-shrinkers with volume growth faster than polynomial in Rn+1 (see also Proposition

1.1 of the paper [5] of Cheng and Ogata).

In order to study the L-instability of a self-shrinker, we use the concept of L-index.

Given a bounded domain Ω ⊂ Σ, define

IndL(Ω) = #{negative eigenvalues of L on C∞0 (Ω)}
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and the L-index of Σ as

IndL(Σ) := sup
Ω⊂Σ

IndL(Ω).

The L-index is the maximal dimension of the subspace in C∞0 (Σ) such that the quadratic

form

QL(ξ, ξ) = −
ˆ

Σ

ξLξe−
1
4
‖x‖2dΣ

is negative. Intuitively, this is the maximal dimension of the subspaces in C∞0 (Σ) such

that the compact variations decreases the weighted area. In this subject, our main result

is

Theorem 1.2. Let Σ be a two-dimensional self-shrinker of R3. If Σ has finite L-index

then

i) Σ is proper;

ii) Σ has finite topology;

ii) the squared norm |A|2 of the second fundamental form satisfiesˆ
Σ

|A|2e−
1
4
‖x‖2dΣ <∞.

As a consequence of Theorem 1.2 we have

Corollary 1.1. Let Σ ⊂ R3 be a complete self-shrinker with L-index at most 4. Then Σ

is a plane or a cylinder S1(
√

2)× R.

Remark 1.2. In [8], Colding and Minicozzi introduced the notion of F -stability considering

the variations of the functional

Fx0,t0(Σ) =

ˆ
Σ

e
− |x−x0|

2

4t0 dΣ.

They proved that a self-shrinker with polynomial volume growth is a critical point of the

functional Fx0,t0 under all the normal variations of the volume and under all the variations

xs and ts of the translations x0 and t0. A self-shrinker with polynomial volume growth is

said F -stable if, for every normal variation Σs of Σ, there exist variations xs and ts of x0

and t0 that make
d2

ds2
(Fxs,ts(Σs))

∣∣∣∣
s=0

≥ 0.

They also proved in Theorem 4.31, p.480, of [8] that the hyperplanes which passes through

the origin are the only F -stable self-shrinkers with polynomial volume growth.
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On the other hand, since there is no L-stable self-shrinker of polynomial volume growth

(i.e., when x0 and t0 are fixed and varies Σ alone), the instability then comes from the

directions of variation given by the translations x0 and t0. This gives there are at most

n + 2 directions of instability and thus, initially, F -stable hypersurfaces of Rn+1 has L-

index at most n+2. Therefore, if we want to remove the hypothesis of polynomial volume

growth in the definition of F -stability, the class of hypersurfaces which must be considered

is the one of hypersurfaces with index at most n+ 2.

Cao and Li proved in [3] that properly immersed n-dimensional self-shrinkers in Rn+k

with the squared norm of the second fundamental form satisfying |A|2 ≤ 1/2 are of the

form Sk(
√

2k)×Rn−k, for k ∈ {0, 1, . . . , n}. As a immediate consequence of Theorem 1.2

and the result of Cao and Li, we can observe that

Corollary 1.2. The only self-shrinking surfaces in R3 with finite index and such that its

squared norm of the second fundamental form satisfies |A|2 ≤ 1/2 are the sphere S2(2),

the plane passing through the origin, and the cylinder S1(
√

2)× R.

In [8], section 9, Colding and Minicozzi defined the bottom of the spectrum of the

operator L by

µ1 = inf
ξ

−
´

Σ
ξLξe−

1
4
‖x‖2dΣ´

Σ
ξ2e−

1
4
‖x‖2dΣ

= inf
ξ

´
Σ

[
|∇ξ|2 −

(
|A|2 + 1

2

)
ξ2
]
e−

1
4
‖x‖2dΣ´

Σ
ξ2e−

1
4
‖x‖2dΣ

,

where the infimum is taken over all smooth functions ξ with compact support in Σ. Notice

that it is possible to have µ1 = −∞. Our next result is

Theorem 1.3. Let Σ ⊂ R3 be a two-dimensional complete self-shrinker. If µ1 ≥ −1
2
,

then Σ is homeomorphic to C. Moreover, it holds

ˆ
Σ

(
|A|2 +H2

)
e−

1
4
‖x‖2dΣ ≤ 4π.

In [8], Colding and Minicozzi proved that complete, embedded, self-shrinkers with poly-

nomial volume growth satisfies µ1 ≤ −1
2

(Theorem 9.2, p.797). Moreover, they proved

that, if H change sign, then µ1 < −1 (Theorem 9.36, p.802 of [8]). In this paper, without

any embeddedness hypothesis, but assuming that Σ has finite weighted volume, we have
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Theorem 1.4. Let Σ ⊂ R3 be a two-dimensional complete self-shrinker with finite weighted

volume. If µ1 ∈ (−∞,−1/2), then Σ has finite topology. Moreover, it holdsˆ
Σ

(
|A|2 +H2

)
e−

1
4
‖x‖2dΣ ≤ 4πχ(Σ)− (2µ1 + 1)

ˆ
Σ

e−
1
4
‖x‖2dΣ <∞,

where χ(Σ) denotes the Euler characteristic of Σ.

As a consequence of Theorem 1.3 and Theorem 1.4 we have

Corollary 1.3. Let Σ ⊂ R3 be a two-dimensional self-shrinker with polynomial volume

growth. If Σ has infinite topology, then µ1 = −∞.

Remark 1.3. We are using, in Corollary 1.3, the equivalence between properness, polyno-

mial volume growth, and ˆ
Σ

e−
1
4
‖x‖2dΣ <∞

proved by Cheng and the third author (see Theorem 1.3, p.688-689 of [7]).

We will include here a result answering an open question proposed by Mantegazza in

[19] for n-dimensional self-shrinkers in Rn+1 removing the volume growth condition or

properness. In Proposition 2.10 in [22], White proved that hyperplanes of multiplicity

one are the only ones realizing the minimum of Gaussian densities of all proper nonempty

mean curvature flows.

Later, Mantegazza reinterpreted and detailed a little bit more in the proof in his book

(see Lemma 3.2.17, p.66 of [19]) showing that, for self-shrinkers, the properness can be

replaced by the integrability condition

(1.1)

ˆ
Σ

e−‖x‖dV <∞.

He also asked whether the the hypothesis (1.1) can be removed (see Remark 3.2.18, p.67 of

[19]). Here we prove that the integrability condition in Lemma 3.2.17, p.66, is superfluous

which gives a positive answer to his question. Namely,

Theorem 1.5. Among all the smooth, complete, n-dimensional self-shrinkers Σ in Rn+1,

the hyperplanes of multiplicity one through the origin are the only minimizers of the func-

tional

F (Σ) :=
1

(4π)
n
2

ˆ
Σ

e−
1
4
‖x‖2dV.

Hence, for all such hypersurfaces the value of this integral is at least 1.
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Remark 1.4. The results we present here, except for Theorem 1.5, will be proven in a more

general context, namely for f -minimal surfaces in three-dimensional weighted Riemannian

manifolds (M3, 〈·, ·〉, e−f ) satisfying

Scal +Hessf(ν, ν) ≥ k

for some k ∈ R. Here, Scal is the scalar curvature of M3 and Hessf(ν, ν) is the hessian

tensor of f in M3 applied to the outward unitary normal vector field ν of Σ in M3.

Remark 1.5. The case of two-dimensional translating solitons and self-expanders is treated

by the first two authors in [1].

2. Preliminaries

Let Σ be a Riemannian surface with Gaussian curvature K. Let r(x) be the Riemannian

(intrinsic) distance in Σ between x ∈ Σ to a fixed point x0 ∈ Σ and let B(s) be the open

geodesic ball in Σ of center x0 and radius s. Denote by L(s) the length of the boundary

of B(s). This length function is a priori only defined for s ∈ R+\E, where the set E

of exceptional values is closed, and has Lebesgue measure zero. For t < s, denote for

C(t, s) = B(s)\B(t), where B(t) is the closure of B(t). Denoting by χ(B(t)) the Euler

characteristic of B(t), define

χ̂(s) = sup{χ(B(t))|t ∈ [s,∞)}.

This function is continuous on the left, nonincreasing from [0,∞) to Z, and with at most

countably many discontinuities. Let

{tj}Nj=1 = {0 < t1 < t2 < · · · < tn < · · · }

be the set of discontinuities, with N ∈ N∪ {∞}, N = 0 when the sequence is empty, and

N =∞ when the sequence is infinite. Notice that this sequence depends on the reference

point x0. At each discontinuity tn, n ≥ 1, the function χ̂ has a jump

ωn = χ̂(t−n )− χ̂(t+n ), ωn ∈ N, ωn ≥ 1.

This implies χ̂(s) = 1, for s ∈ [0, t1], and

χ̂(s) = 1− (ω1 + · · ·+ ωn) ≤ −(n− 1),

for s ∈ (tn, tn+1].
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One of the key facts we use in the proof of our results is the following inequalities,

which were proved first by Fiala [11] for the set R+\E and were extended to R+ by the

work Hartman [15], Shiohama and Tanaka [20] and [21]. For a more details, we refer to

the paper [2] of Bérard and Castillon.

Lemma 2.1 (Fiala’s inequality). On the set R+\E, the function L is of class C1 and its

extension to R+ satisfies

i)

L′(t) ≤ 2πχ(B(t))−
ˆ
B(t)

KdΣ,

where χ(B(t)) is the Euler characteristic of B(t);

ii)

L(b)− L(a) ≤ L(b−)− L(a) ≤
ˆ b

a

L′(t)dt,

whenever 0 ≤ a < b.

The proof of the following Lemma can found in [2].

Lemma 2.2. Let Σ be a complete Riemannian surface. Let {tn}Nn=1 be the set of discon-

tinuities of the function χ, with jumps ωn, relative to some reference point x0 ∈ Σ. Let

χ(Σ) be the Euler characteristic of Σ, with χ(Σ) = −∞ if Σ does not have finite topology.

Then,

1−
N∑
n=1

ωn ≤ χ(Σ).

We will also need the well known coarea formula, which we state here for the sake of

completeness.

Lemma 2.3 (Coarea formula). Let h : Σ → R be a Lipschitz function. If h−1((−∞, t])
is compact for all t ∈ R, then

ˆ
{h≤t}

g|∇Σh|dΣ =

ˆ t

−∞

[ˆ
{h=u}

gdA

]
du,

for every g : Σ→ R locally integrable. In particular,

d

dt

[ˆ
{h≤t}

g|∇Σh|dΣ

]
=

ˆ
{h=t}

gdA.
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Corollary 2.1. For every g : Σ→ R locally integrable,

ˆ
B(t)

gdΣ =

ˆ t

−∞

[ˆ
∂B(u)

gds

]
du

where ds is the length element of ∂B(u). In particular,

d

dt

[ˆ
B(t)

gdΣ

]
=

ˆ
∂B(u)

gds.

Definition 2.1. Let 0 ≤ R < S. We say that a function ξ : [R, S] → R is admissible in

the interval [R, S] if

i) ξ is of class C1 and piecewise C2 in [R, S];

ii) ξ ≥ 0, ξ′ ≤ 0 and ξ′′ ≥ 0.

The next lemma uses the ideas of the proof of Theorem 3.4, p.223 by Gulliver and

Lawson, see [13], see also Lemma 2.2, p.1245 of [2] and Lemma 1.8, p.276 of Castillon’s

paper [4].

Lemma 2.4. Fix x0 ∈ Σ and let r(x) be the distance to x0 in Σ. If f : Σ → R is a

locally integrable function, such that infΣ f > −∞ then, for every 0 ≤ R < Q and for any

admissible function ξ on [R,Q],

ˆ
C(R,Q)

Kξ(r)2e−fdΣ ≤ e− infΣ f [ξ2G+ 2ξξ′L− 2πχ̂(R)ξ2]
∣∣Q
R
−
ˆ
C(R,Q)

(ξ2)′′(r)e−fdΣ.

(2.1)

Proof. Let

G(t) =

ˆ
B(t)

KdΣ and H(t) =

ˆ t

R

G(u)du.

Since f ≥ infΣ f in C(R,Q), we have e−f ≤ e− infΣ f . This gives

ˆ
C(R,Q)

Kξ(r)2e−fdΣ ≤ e− infΣ f

ˆ
C(R,Q)

Kξ(r)2dΣ.
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On the other hand, by using the coarea formula (see Corollary 2.1), we haveˆ
C(R,Q)

Kξ(r)2dΣ =

ˆ Q

R

ξ(t)2

ˆ
S(t)

Kdsdt

=

ˆ Q

R

ξ(t)2G′(t)dt = ξ2G
∣∣Q
R
−
ˆ Q

R

(ξ2)′Gdt

= ξ2e−FG
∣∣Q
R
−
ˆ Q

R

(ξ2)′H ′dt

= ξ2e−FG
∣∣Q
R
− (ξ)′H|QR +

ˆ Q

R

(ξ2)′′Hdt.

By using the Fiala’s inequality of Lemma 2.1, we obtain

H(t) =

ˆ t

R

G(u)du ≤
ˆ t

R

[2πχ(B(u))− L′(u)]du

≤ 2πχ̂(R)(t−R)− L(t) + L(R).

Since ξ is admissible, then (ξ2)′ = 2ξξ′ ≤ 0 and (ξ2)′′ = 2(ξ′)2 + 2ξξ′′ ≥ 0. Thus, using

that H(R) = 0,ˆ
C(R,Q)

Kξ(r)2dΣ ≤ ξ2G
∣∣Q
R
− (ξ2)′(Q)[2πχ̂(R)(Q−R)− L(Q) + L(R)]

+ 2πχ̂(R)

ˆ Q

R

(ξ2)′′(t)(t−R)dt+ L(R)

ˆ Q

R

(ξ2)′′(t)dt

−
ˆ Q

R

(ξ2)′′(t)L(t)dt

= ξ2G
∣∣Q
R
− 2πχ̂(R)(ξ2)′(Q)(Q−R)

+ L(Q)(ξ2)′(Q)− L(R)(ξ2)′(Q)

+ 2πχ̂(R)

[
(ξ2)′(Q)(Q−R)−

ˆ Q

R

(ξ2)′(t)dt

]
+ L(R)(ξ2)′(Q)− L(R)(ξ2)′(R)−

ˆ Q

R

(ξ2)′′(t)L(t)dt

= ξ2G
∣∣Q
R

+ (ξ2)′L
∣∣Q
R
− 2πχ̂(R)(ξ2)

∣∣Q
R
−
ˆ Q

R

(ξ2)′′(t)L(t)dt

= [ξ2G+ (2ξξ′)L− 2πχ̂(R)ξ2]
∣∣Q
R
−
ˆ Q

R

(ξ2)′′(t)L(t)dt.

Thus,ˆ
C(R,Q)

Kξ(r)2e−fdΣ ≤ e− infΣ f [ξ2G+ (2ξξ′)L− 2πχ̂(R)ξ2]
∣∣Q
R
−e− infΣ f

ˆ Q

R

(ξ2)′′(t)L(t)dt.
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By using the coarea formula again and the fact that (ξ2)′′(t) ≥ 0, we have

e− infΣ f

ˆ Q

R

(ξ2)′′(t)L(t)dt = e− infΣ f

ˆ Q

R

(ξ2)′′(t)

ˆ
S(t)

dsdt

= e− infΣ f

ˆ
C(R,Q)

(ξ2)′′(r)|∇Σr|dΣ

= e− infΣ f

ˆ
C(R,Q)

(ξ2)′′(r)dΣ

≥
ˆ
C(R,Q)

(ξ2)′′(r)e−fdΣ.

This concludes the proof of the lemma. �

Lemma 2.5. Let {tn}Nn=1 be the discontinuities of the function χ̂. Let N(R) be the largest

integer n such that tn ≤ R. Let ξ be an admissible function in the interval [R,Q]. If

f : Σ→ R is a locally integrable function such that infΣ f > −∞, then

einfΣ f

ˆ
C(R,Q)

Kξ(r)2e−fdΣ ≤ [ξ2G+ (ξ2)′L]
∣∣Q
R

+ 2πχ̂(tN(R))ξ(R)2

−
N(Q)∑

n=N(R)+1

2πωnξ(tn)2 − 2πχ̂(tN(Q))ξ(Q)2

− einfΣ f

ˆ
C(R,Q)

(ξ2)′′(r)e−fdΣ.

(2.2)

In particular, if R = 0 and assuming that ξ(Q) = 0, then

ˆ
B(Q)

Kξ(r)2e−fdΣ ≤ 2πe− infΣ f

ξ(0)2 −
N(Q)∑
n=1

ωnξ(tn)2

− ˆ
B(Q)

(ξ2)′′(r)e−fdΣ.(2.3)
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Proof. Applying Lemma 2.4, we have

einfΣ f

ˆ
C(R,Q)

Kξ(r)2e−fdΣ = einfΣ f

ˆ
C(R,tN(R)+1)

Kξ(r)2e−fdΣ

+

N(Q)−1∑
n=N(R)+1

einfΣ f

ˆ
C(tn,tn+1)

Kξ(r)2e−fdΣ

+ einfΣ f

ˆ
C(tN(Q),Q)

Kξ(r)2e−fdΣ

≤ [ξ2G+ 2ξξ′L]
∣∣Q
R
− 2πχ̂(tN(R))[ξ(tN(R)+1)2 − ξ(R)2]

− 2π

N(Q)−1∑
n=N(R)+1

χ̂(tn)[ξ(tn+1)2 − ξ(tn)2]

− 2πχ̂(tN(Q))[ξ(Q)2 − ξ(tN(Q))
2]

− einfΣ f

ˆ
C(R,Q)

(ξ2)′′(r)e−fdΣ.

Since χ̂(tn) = ωn + χ̂(tn−1), we have

χ̂(tN(R))[ξ(tN(R)+1)2 − ξ(R)2] +

N(Q)−1∑
n=N(R)+1

χ̂(tn)[ξ(tn+1)2 − ξ(tn)2]

+ χ̂(tN(Q))[ξ(Q)2 − ξ(tN(Q))
2]

= χ̂(tN(R))ξ(tN(R)+1)2 − χ̂(tN(R))ξ(R)2 +

N(Q)−1∑
n=N(R)+1

χ̂(tn)ξ(tn+1)2

−
N(Q)−2∑
n=N(R)

χ̂(tn+1)ξ(tn+1)2 + χ̂(tN(Q))ξ(Q)2 − χ̂(tN(Q))ξ(tN(Q))
2

= −χ̂(tN(R))ξ(R)2 +

N(Q)−1∑
n=N(R)

χ̂(tn)ξ(tn+1)2 −
N(Q)−1∑
n=N(R)

χ̂(tn+1)ξ(tn+1)2 + χ̂(tN(Q))ξ(Q)2

= −χ̂(tN(R))ξ(R)2 −
N(Q)∑
N(R)+1

[χ̂(tn)− χ̂(tn−1)]ξ(tn)2 + χ̂(tN(Q))ξ(Q)2

= −χ̂(tN(R))ξ(R)2 −
N(Q)∑
N(R)+1

ωnξ(tn)2 + χ̂(tN(Q))ξ(Q)2.

This concludes the proof of estimate (2.2). �
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Definition 2.2. Let (Σ, 〈·, ·〉, e−f ) be a Riemannian surface with weighted measure e−fdΣ

and ∆fu = ef div(e−fu) = ∆u − 〈∇f,∇u〉 be its weighted Laplacian, where ∆ denotes

the Laplacian and ∇ denotes the gradient on Σ. If W is a locally integrable function and

a ∈ R, we say that the operator ∆f − aK −W is nonnegative if the quadratic form

Q(ξ, ξ) = −
ˆ

Σ

ξ[∆fξ − aKξ −Wξ]e−fdΣ

=

ˆ
Σ

[
|∇ξ|2 + aKξ2 +Wξ2

]
e−fdΣ ≥ 0,

(2.4)

for every Lipschitz function with compact support in Σ (or equivalently on C1 functions

with compact support).

Proposition 2.1. Let Σ be a complete, noncompact Riemannian surface, f : Σ→ R and

W : Σ → R be locally integrable functions such that infΣ f > −∞. If ∆f − aK −W is

nonnegative, then

einfΣ f

ˆ
B(Q)

W−ξ(r)
2e−fdΣ + einfΣ f

ˆ
B(Q)

[(2a− 1)(ξ′(r))2 + 2aξ(r)ξ′′(r)]e−fdΣ

+ 2πa

N(Q)∑
n=1

ωnξ(tn)2 ≤ 2πaξ(0)2 + einfΣ f

ˆ
B(Q)

W+ξ(r)
2e−fdΣ,

(2.5)

for every admissible function with support in B(Q), where B(Q) is the geodesic ball of Σ

with center at a fixed reference point x0 ∈ Σ and radius Q > 0. Here, W+ = max{W, 0},
W− = max{−W, 0}, {tn}Nn=1 is the set of discontinuities of the function χ̂, ωn = χ̂(t−n )−
χ̂(t+n ), and N(Q) is the largest integer n such that tn ≤ Q. In particular, if a ∈ (1/4,∞),

then taking ξ(t) = (1− t/Q)2α for α > 4a/(4a− 1), we have, for every ε ∈ (0, 1),

(1− ε)2αeinfΣ f

ˆ
B(εQ)

W−e
−fdΣ + α[(4a− 1)α− 2a](1− ε)2α−2 e

infΣ f

Q2

ˆ
B(εQ)

e−fdΣ

+ 2πa

N(Q)∑
n=1

ωn

(
1− tn

Q

)2α

≤ 2πa+ einfΣ f

ˆ
B(Q)

W+e
−fdΣ.

(2.6)

Proof. First notice that W = W+ −W−. Applying the inequality (2.4) to the admissible

function ξ(r(x)) gives

ˆ
B(Q)

W−ξ(r)
2e−fdΣ ≤

ˆ
B(Q)

[(ξ′(r))2 + aKξ(r)2]e−fdΣ +

ˆ
B(Q)

W+ξ(r)
2e−fdΣ.
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Considering ξ(Q) = 0 and using (2.3), we have

ˆ
B(Q)

W−ξ(r)
2e−fdΣ ≤

ˆ
B(Q)

(ξ′(r))2e−fdΣ + 2πae− infΣ f

ξ(0)2 −
N(Q)∑
n=1

ωnξ(tn)2


− a
ˆ
B(Q)

(ξ2)′′(r)e−fdΣ +

ˆ
B(Q)

W+ξ(r)
2e−fdΣ.

= 2πae− infΣ fξ(0)2 +

ˆ
B(Q)

[(1− 2a)(ξ′(r))2 − 2aξ(r)ξ′′(r)]e−fdΣ

− 2πa

N(Q)∑
n=1

ωnξ(tn)2 +

ˆ
B(Q)

W+ξ(r)
2e−fdΣ.

This proves (2.5). By taking ξ(r) = (1− r/Q)α, where α > 1, we have

ξ′(r) = −α
Q

(
1− r

Q

)α−1

≤ 0, and ξ′′(r) =
α(α− 1)

Q2

(
1− r

Q

)α−2

≥ 0,

which implies that ξ is admissible. Moreover,

(1− 2a)(ξ′(r))2 − 2aξ(r)ξ′′(r) = −α[(4a− 1)α− 2a]

Q2

(
1− r

Q

)2α−2

.

This gives

einfΣ f

ˆ
B(Q)

W−

(
1− r

Q

)2α

e−fdΣ + 2πa

N(Q)∑
n=1

ωn

(
1− tn

Q

)2α

+ α[(4a− 1)α− 2a]
einfΣ f

Q2

ˆ
B(Q)

(
1− r

Q

)2α−2

e−fdΣ

≤ 2πa+ einfΣ f

ˆ
B(Q)

W+e
−fdΣ.

(2.7)

Taking a > 1/4 and α > 4a
4a−1

, all the terms in the left hand side of (2.7) are nonnegative.

In order to conclude the proof of the proposition, notice that, for every ε ∈ (0, 1),
ˆ
B(Q)

W−

(
1− r

Q

)2α

e−fdΣ ≥
ˆ
B(εQ)

W−

(
1− r

Q

)2α

e−fdΣ

≥ (1− ε)2α

ˆ
B(εQ)

W−e
−fdΣ.

Analogously, since, for r ∈ [0, εQ], (1−ε)β < (1−r/Q)β < 1 if β > 0 and 1 < (1−r/Q)β <
1

(1−ε)β if β < 0, we have

einfΣ f

Q2

ˆ
B(Q)

(
1− r

Q

)2α−2

e−fdΣ ≥ (1− ε)2α−2 e
infΣ f

Q2

ˆ
B(εQ)

e−fdΣ.
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Replacing these two estimates in (2.7) gives

(1− ε)2αeinfΣ f

ˆ
B(εQ)

W−e
−fdΣ + 2πa

N(Q)∑
n=1

ωn

(
1− tn

Q

)2α

+ α[(4a− 1)α− 2a](1− ε)2α−2 e
infΣ f

Q2

ˆ
B(εQ)

e−fdΣ

≤ 2πa+ einfΣ f

ˆ
B(Q)

W+e
−fdΣ.

�

3. f-Stability

If Σ is a complete, orientable, f -minimal surface of a weighted manifold (M3, 〈·, ·〉, e−f ),
then its mean curvature H satisfies H = 〈∇f, ν〉, where ∇ denotes the gradient of M3 and

ν is the outward unitary normal vector field of the immersion. The f -minimal surfaces

are the critical points of the weighted area functionalˆ
Σ

e−fdΣ

under all the compactly supported normal variations. Taking the second derivative, we

have

d2

dt2

(ˆ
Σ

e−fdΣ

)∣∣∣∣
t=0

= −
ˆ

Σ

ξ[∆fξ + (|A|2 + Ricf (ν, ν))ξ]e−fdΣ

:= −
ˆ

Σ

ξLfξe
−fdΣ,

for every variation of the form ξν, where ξ : Σ → R is a smooth compactly supported

function. Here,

Lfξ = ∆fξ + (|A|2 + Ricf (ν, ν))ξ

is the Lf -stability operator, ∆fξ = ef div(e−f∇ξ) = ∆ξ − 〈∇ξ,∇f〉 is the weighted

(drifted) Laplacian, ∇ is the gradient of Σ, |A|2 is the squared norm of the second fun-

damental form of Σ, Ricf = Ric + Hessf, Ric is the Ricci tensor of M3, and Hessf is the

Hessian tensor of f in M3. We refer the reader to [6] to more detailed discussions and

calculations.

We say that a f -minimal surface is Lf -stable if

d2

dt2

(ˆ
Σ

e−fdΣ

)∣∣∣∣
t=0

≥ 0
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for every compactly supported variation. Since the squared norm of the second funda-

mental form satisfies

|A|2 = H2 − 2(K −K(TΣ))

= 〈∇f, ν〉2 − 2K + 2K(TΣ),

where K(TΣ) is the sectional curvature of M3 at the plane TΣ, if Σ is Lf -stable, then

0 ≤ −
ˆ

Σ

ξ
[
∆fξ + (|A|2 + Ricf (ν, ν))ξ

]
e−fdΣ

=

ˆ
Σ

[
|∇ξ|2 +Kξ2 −

(
1

2
|A|2 +

1

2
〈∇f, ν〉2 + Scal +Hessf(ν, ν)

)
ξ2

]
e−fdΣ

=

ˆ
Σ

[
|∇ξ|2 +Kξ2 −

(
1

2
|A|2 +

1

2
H2 + Scal +Hessf(ν, ν)

)
ξ2

]
e−fdΣ,

for every smooth function ξ with compact support in Σ.

If Σ is closed (i.e., compact without boundary), an argument similar to Fischer-Colbrie

and Schoen, see [12], gives

Theorem 3.1. If a Lf -stable, closed, f -minimal surface Σ of a weighted three-dimensional

Riemannian manifold (M3, 〈·, ·〉, e−f ), satisfies

Scal +Hessf(ν, ν) ≥ 0,

then Σ is homeomorphic to the sphere S2 or the flat torus T 2. Moreover,

i) if Scal +Hessf(ν, ν) > 0 then Σ is homeomorphic to S2;

ii) if Σ is homeomorphic to T 2 then Σ is totally geodesic and Scal +Hessf(ν, ν) ≡ 0.

Here Scal is the scalar curvature of M3, Hessf is the Hessian tensor of f in M3, and

ν is the outward unitary normal vector field of the immersion.

Proof. Since Σ is Lf -stable, we haveˆ
Σ

(
1

2
|A|2 +

1

2
H2 + Scal +Hessf(ν, ν)

)
ξ2e−fdΣ ≤

ˆ
Σ

[
|∇ξ|2 +Kξ2

]
e−fdΣ.

Taking ξ ≡ 1 and using the Gauss-Bonnet theorem, we haveˆ
Σ

(
1

2
|A|2 + Scal +

1

2
H2 + Hessf(ν, ν)

)
e−fdΣ ≤

ˆ
Σ

Ke−fdΣ.

≤ (max
Σ

e−f )

ˆ
Σ

KdΣ

= 2π(max
Σ

e−f )χ(Σ).
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Since the left hand side is nonnegative by hypothesis, we have that χ(Σ) = 1 or χ(Σ) = 0.

In the first case Σ is homeomorphic to S2 and, in the second case, Σ is homeomorphic to T 2.

Moreover, if Scal +Hessf(ν, ν) > 0, then χ(Σ) = 1 and Σ is homeomorphic to S2. If Σ is

homeomorphic to T 2, then χ(Σ) = 0, which gives |A|2 ≡ 0 and Scal +Hessf(ν, ν) ≡ 0. �

Remark 3.1. Theorem 3.1 can be compared with Theorem 1, p.1066, of [18], where Liu

proved a topological classification result for closed, orientable hypersurfaces in oriented,

complete, m-dimensional Riemannian manifolds (Mm, g, e−f ) satisfying Ricf ≥ 0.

In the following we will consider the case where Σ is complete and noncompact. For

Lf -stable f -minimal surfaces with infΣ f > −∞, we have

Theorem 3.2. If a Lf -stable, complete, f -minimal surface Σ of a weighted three-dimensional

Riemannian manifold (M3, 〈·, ·〉, e−f ), for infΣ f > −∞, satisfies

Scal +Hessf(ν, ν) ≥ 0,

then Σ is homeomorphic to C or C\{0}. Moreover,

i) the f -volume of Σ has at most quadratic growth;

ii) if Σ is homeomorphic to C\{0}, then Σ is totally geodesic and Scal +Hessf(ν, ν) ≡
0.

iii) it holds

ˆ
Σ

[
1

2
|A|2 +

1

2
H2 + Scal +Hessf(ν, ν)

]
e−fdΣ ≤ 2πχ(Σ)e− infΣ f <∞.

In particular, ˆ
Σ

|A|2e−fdΣ <∞.

Moreover, if there exists k > 0 such that Scal +Hessf(ν, ν) ≥ k, then the f -volume

of Σ is finite.

Here Scal is the scalar curvature of M3, Hessf is the Hessian tensor of f in M3, and ν

is the outward unitary normal vector field of the immersion.

Proof. Since infΣ f > −∞, we can use Proposition 2.1. Let {tn}Nn=1 be the discontinuities

of χ̂(s). Choose N = N if N < ∞ and consider N as any fixed integer if N = ∞. By
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taking Q large enough, inequality (2.6) gives

(1− ε)2α

ˆ
B(εQ)

[
1

2
|A|2 +

1

2
H2 + Scal +Hessf(ν, ν)

]
e−fdΣ

+ α(3α− 2)ε2(1− ε)2α−2 1

(εQ)2

ˆ
B(εQ)

e−fdΣ

+ 2πe− infΣ f

N∑
n=1

ωn

(
1− tn

Q

)2α

≤ 2πe− infΣ f .

(3.1)

By taking Q→∞, we obtain, from the second integral in the left hand side of (3.1), that´
B(Q)

e−fdΣ has at most quadratic growth and, by taking N → N,

N∑
n=1

ωn <∞.

Since ωn ≥ 1, we get N <∞. On the other hand, Lemma 2.2, p.7, implies

1−
N∑
n=1

ωn ≤ χ(Σ)

which gives, by taking ε→ 0,ˆ
Σ

[
1

2
|A|2 +

1

2
H2 + Scal +Hessf(ν, ν)

]
e−fdΣ ≤ 2πχ(Σ)e− infΣ f <∞.

Moreover, since the left hand side of the last inequality is nonnegative, we have

N∑
n=1

ωn ≤ 1

and thus N = 0 and Σ is homeomorphic to C or N = 1, ω1 = 1 and Σ is homeomorphic

to C\{0}. Moreover, if Σ is homeomorphic to C\{0}, then χ(Σ) = 0, which gives

0 ≤
ˆ

Σ

[
1

2
|A|2 +

1

2
H2 + Scal +Hessf(ν, ν)

]
e−fdΣ ≡ 0.

This implies that Σ is totally geodesic, Scal +Hessf(ν, ν) ≡ 0 and 〈∇f,N〉 ≡ 0. �

Remark 3.2. The hypothesis Scal +Hessf(ν, ν) ≥ 0 of Theorem 3.2 can be replaced by

the weaker one ˆ
Σ

(Scal +Hessf(ν, ν))−e
−fdΣ <∞.

In this case, however, we obtain the weaker result that Σ has finite topology, i.e., its Euler

characteristic χ(Σ) > −∞. Here, W− = max{−W, 0} is the negative part of the function

W.
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If Σ is a L-stable, complete self-shrinker of the mean curvature flow in R3, then Σ is a

Lf -stable f -minimal surface of R3 for f = 1
4
‖x‖2. Applying Theorem 3.2 to this situation

we can prove Theorem 1.1:

Proof of Theorem 1.1. By using Theorem 3.2, and noticing that infΣ
1
4
‖x‖2 ≥ 0, we have

1

2

ˆ
Σ

(
|A|2 +

1

4
〈x, ν〉2 + 1

)
e−

1
4
‖x‖2dΣ ≤ 2πχ(Σ) <∞.

In particular, ˆ
Σ

e−
1
4
‖x‖2dΣ <∞.

On the other hand, Colding and Minicozzi proved in [8] (see Theorem 0.5 of [9]) that there

is no L-stable self-shrinker with polynomial volume growth. Since polynomial volume

growth is equivalent to
´

Σ
e−

1
4
‖x‖2dΣ <∞ by Theorem 1.3, p.688-689, of [7], we conclude

the proof of the Theorem. We remark that this conclusion can be also derived more

directly by using Theorem 3, p.4042, of [6]. �

4. f-Index

Let L = ∆f −W, where W is a locally integrable function. Given a bounded domain

Ω ⊂ Σ, define

IndL(Ω) = #{negative eigenvalues of L on C∞0 (Ω)}

and the f -index of Σ as

Indf (Σ) := IndL(Σ) = sup
Ω⊂Σ

IndL(Ω).

The f -index is the maximal dimension of the linear subspaces of C∞0 such that the qua-

dratic form

Qf (ξ, ξ) = −
ˆ

Σ

ξLξe−fdΣ = −
ˆ

Σ

ξ [∆fξ −Wξ] e−fdΣ =

ˆ
Σ

[
|∇ξ|2 +Wξ2

]
e−fdΣ

is negative.

We will need the following result, due to Devyver [10], and which was enunciated in

the following form by Impera and Rimoldi in [16], Proposition 5, p.29:

Proposition 4.1. Let (Σ, 〈·, ·〉, e−f ) be a weighted complete manifold, and let L = ∆f−W,
where W ∈ L∞loc(Σ). The following facts are equivalent:

i) L has finite Morse index;
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ii) there exists a positive smooth function ϕ ∈ W 1,2
loc which satisfies Lφ = 0 outside a

compact set;

iii) λL1 (M\Ω) ≥ 0 for some Ω ⊂ Σ, i.e., L is nonnegative in M\Ω.

We will also need the following result, which use some ideas of Proposition 4.1., p.1259,

of [2]:

Proposition 4.2. Let (Σ, 〈·, ·〉, e−f ) be a weighted complete Riemannian manifold and let

W be a locally integrable function on Σ. Then the operator L = ∆f −W has finite f -index

if and only if there exists a locally integrable function P with compact support such that

the operator ∆f −W − P is nonnegative.

Proof. Suppose that L = ∆f −W has finite index. By the Proposition 4.1, there exists

a compact set K ⊂ Σ such that L is nonnegative in Σ\K. Let us find a function P, with

support in a compact neighborhood of K, such that L − P is nonnegative in the whole

Σ. Let φ be a smooth function with compact support, such that 0 ≤ φ ≤ 1, and φ ≡ 1 in

a compact neighborhood of K. Given any smooth function ξ with compact support in Σ,

write

ξ = φξ + (1− φ)ξ.

We have ˆ
Σ

[
|∇ξ|2 +Wξ2

]
e−fdΣ

=

ˆ
Σ

[
|∇((1− φ)ξ)|2 + 2〈∇(φξ),∇((1− φ)ξ)〉+ |∇(φξ)|2

]
e−fdΣ

+

ˆ
Σ

W
[
(1− φ)2ξ2 + 2φ(1− φ)ξ2 + (φξ)2

]
e−fdΣ

=

ˆ
Σ

[
|∇((1− φ)ξ)|2 +W ((1− φ)ξ)2

]
e−fdΣ

+

ˆ
Σ

W
[
φ2 + 2φ(1− φ)

]
ξ2e−fdΣ

+

ˆ
Σ

[
2〈∇(φξ),∇((1− φ)ξ)〉+ |∇(φξ)|2

]
e−fdΣ.

On the other hand, since

〈∇(φξ),∇((1− φ)ξ)〉 = 〈ξ∇φ+ φ∇ξ,−ξ∇φ+ (1− φ)∇ξ〉

= −ξ2|∇φ|2 + ξ(1− 2φ)〈∇φ,∇ξ〉+ φ(1− φ)|∇ξ|2
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and

|∇(φξ)|2 = φ2|∇ξ|2 + 2φξ〈∇φ,∇ξ〉+ ξ2|∇φ|2,

we have

2〈∇(φξ),∇((1− φ)ξ)〉+ |∇(φξ)|2 = −ξ2|∇φ|2 + 2ξ(1− φ)〈∇ξ,∇φ〉

+ 2φ

(
1− 1

2
φ

)
|∇ξ|2.

On the other hand, since divf (u∇v) = u∆fv + 〈∇u,∇v〉, we obtain

2ξ(1− φ)〈∇ξ,∇φ〉 = −1

2
〈∇(ξ2),∇((1− φ)2)〉

= −1

2
divf (ξ

2∇((1− φ)2)) +
1

2
φ2∆f ((1− φ)2)

This gives
ˆ

Σ

[
|∇ξ|2 +Wξ2

]
e−fdΣ =

ˆ
Σ

[
|∇((1− φ)ξ)|2 +W ((1− φ)ξ)2

]
e−fdΣ

+

ˆ
Σ

W
[
φ2 + 2φ(1− φ)

]
ξ2e−fdΣ−

ˆ
Σ

ξ2|∇φ|2e−fdΣ

+
1

2

ˆ
Σ

ξ2∆f ((1− φ)2)e−fdΣ + 2

ˆ
Σ

φ

(
1− 1

2
φ

)
|∇ξ|2e−fdΣ

=

ˆ
Σ

[
|∇((1− φ)ξ)|2 +W ((1− φ)ξ)2

]
e−fdΣ

+ 2

ˆ
Σ

φ

(
1− 1

2
φ

)
|∇ξ|2e−fdΣ

−
ˆ

Σ

[
φ(φ− 2)W + |∇φ|2 − 1

2
∆f ((1− φ)2)

]
ξ2e−fdΣ.

Defining

P = φ(φ− 2)W + |∇φ|2 − 1

2
∆f ((1− φ)2)

we can see that P is locally integrable, has compact support in Σ, and
ˆ

Σ

[
|∇ξ|2 +Wξ2 + Pξ2

]
e−fdΣ =

ˆ
Σ

[
|∇((1− φ)ξ)|2 +W ((1− φ)ξ)2

]
e−fdΣ

+ 2

ˆ
Σ

φ

(
1− 1

2
φ

)
|∇ξ|2e−fdΣ ≥ 0.

Conversely, suppose there exists a locally integrable function P with compact support and

such that L − P is nonnegative. Let K ⊂ Σ be a compact neighborhood of the support
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of P. Given any function ξ with compact support in Σ\K, we have

ˆ
Σ

[
|∇ξ|2 +Wξ2

]
e−fdΣ =

ˆ
Σ

[
|∇ξ|2 +Wξ2 + Pξ2

]
e−fdΣ ≥ 0.

This gives that L is nonnegative in M\K. By Proposition 4.1, we conclude that L has

finite index. �

In the following we will consider the f -index of the stability operator

Lf = ∆f + (Ricf (ν, ν) + |A|2).

Now we are ready to present the main result of this section:

Theorem 4.1. If a complete f -minimal surface Σ of a weighted three-dimensional Rie-

mannian manifold (M3, 〈·, ·〉, e−f ), for infΣ f > −∞, has finite f -index and satisfies

Scal +Hessf(ν, ν) ≥ 0,

then Σ has finite topology (i.e., the Euler characteristic χ(Σ) > −∞). Moreover,

i) the f -volume of Σ has quadratic growth;

ii) it holds

ˆ
Σ

[
1

2
|A|2 +

1

2
H2 + Scal +Hessf(ν, ν)

]
e−fdΣ <∞.

In particular, ˆ
Σ

|A|2e−fdΣ <∞.

Moreover, if there exists k > 0 such that Scal +Hessf(ν, ν) ≥ k, then the f -volume

of Σ is finite.

Here Scal is the scalar curvature of M3, Hessf is the Hessian tensor of f in M3, and ν

is the outward unitary normal vector field of the immersion.

Proof. Since Σ has finite index, by Proposition 4.2, there exists a locally integrable func-

tion P, with compact support, such that Lf + P is nonnegative. Since infΣ f > −∞,
we can use Proposition 2.1. Let {tn}Nn=1 be the discontinuities of χ̂(s). Choose N = N

if N < ∞ and consider N as any fixed integer if N = ∞. By taking Q large enough,
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inequality (2.6) gives

(1− ε)2α

ˆ
B(εQ)

[
1

2
|A|2 +

1

2
H2 + Scal +Hessf(ν, ν)

]
e−fdΣ

+ α(3α− 2)ε2(1− ε)2α−2 1

(εQ)2

ˆ
B(εQ)

e−fdΣ

+ 2πe− infΣ f

N∑
n=1

ωn

(
1− tn

Q

)2α

≤ 2πe− infΣ f +

ˆ
Σ

Pe−fdΣ.

(4.1)

Notice that, since P ha compact support and it is locally integrable, then the last in

integral in the right hand side of (4.1) is finite. By taking Q → ∞, we obtain, by the

second integral in the left hand side of (4.1), that
´
B(Q)

e−fdΣ has at most quadratic

growth and, by taking N → N,
N∑
n=1

ωn <∞.

Since ωn ≥ 1, we get N <∞. On the other hand, Lemma 2.2, p.7, implies

1−
N∑
n=1

ωn ≤ χ(Σ)

which gives, by taking ε→ 0,ˆ
Σ

[
1

2
|A|2 +

1

2
H2 + Scal +Hessf(ν, ν)

]
e−fdΣ

≤ 2πχ(Σ)e− infΣ f +

ˆ
Σ

Pe−fdΣ. <∞.

Moreover, since the left hand side of the last inequality is nonnegative,

χ(Σ) ≥ −einfΣ f

ˆ
Σ

Pe−fdΣ > −∞,

i.e., Σ has finite topology. �

Remark 4.1. The case when infΣ f =∞ is treated by the first two authors in [1].

Now, we conclude this section by proving Theorem 1.2 and Corollary 1.1 in the Intro-

duction.

Proof of Theorem 1.2. Applying Theorem 4.1, we obtain that Σ has finite topology and

it holds
1

2

ˆ
Σ

(
|A|2 +

1

4
〈x, ν〉2 + 1

)
e−

1
4
‖x‖2dΣ <∞.



STABILITY PROPERTIES OF SELF-SHRINKERS 23

This gives ˆ
Σ

|A|2e−
1
4
‖x‖2dΣ <∞ and

ˆ
Σ

e−
1
4
‖x‖2dΣ <∞.

By the last statement and using Theorem 1.3, p.688-689, of [7], we have that Σ is proper.

�

Proof of Corollary 1.1. Since the L-index is at most 4, then by Theorem 1.2 we have that

Σ is proper. The conclusion comes from the result of Impera, see [17], which proves that

a properly immersed m-dimensional self-shrinker of Rm+1 is a hyperplane with L-index

one or it has L-index at least m + 2, with the equality holding only on the cylinders

Sk(
√
k)× Rm−k. �

5. The bottom of the spectrum of the stability operator

Definition 5.1. Let Σ ⊂ (M3, 〈·, ·〉, e−f ) be a f -minimal surface. We define the bottom

of the spectrum of the Lf -operator on Σ by

µ1 = inf
ξ

−
´

Σ
ξLfξe

−fdΣ´
Σ
ξ2e−fdΣ

= inf
ξ

´
Σ

[
|∇ξ|2 − (|A|2 + Ricf (ν, ν))ξ2

]
e−fdΣ´

Σ
ξ2e−fdΣ

,

where the infimum is taken over every smooth function with compact support in Σ. Here

Lfξ = ∆fξ + (Ricf (ν, ν) + |A|2)ξ.

Remark 5.1. Following our previous discussions, Definition 5.1 is equivalent to the in-

equalities

0 ≤
ˆ

Σ

[
|∇ξ|2 +Kξ2 −

(
1

2
|A|2 +

1

2
〈∇f, ν〉2 + Scal +Hessf(ν, ν)

)
ξ2 − µ1ξ

2

]
e−fdΣ

=

ˆ
Σ

[
|∇ξ|2 +Kξ2 −

(
1

2
|A|2 +

1

2
H2 + Scal +Hessf(ν, ν)

)
ξ2 − µ1ξ

2

]
e−fdΣ

for every smooth function ξ with compact support in Σ.

The proof of the next result follows the same steps of the proof of Theorem 3.2. Theorem

1.3 and Theorem 1.4 are direct applications of this theorem by taking f(x) = 1
4
‖x‖2 ≥ 0.

Theorem 5.1. Let Σ be a complete f -minimal surface of a weighted manifold (M3, 〈·, ·〉, e−f ),
such that infΣ f > −∞ and Scal +Hessf(ν, ν) ≥ δ, for some δ ∈ R.
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i) If the bottom of the spectrum of Lf satisfies µ1 ≥ −δ, then Σ is homeomorphic to

C or C\{0}, the f -volume of Σ has at most quadratic volume growth, and it holdsˆ
Σ

[
1

2
|A|2 +

1

2
H2 + Scal +Hessf(ν, ν)− δ

]
e−fdΣ ≤ 2πχ(Σ)e− infΣ f <∞.

Moreover,

a) if Σ is homeomorphic to C\{0}, then Σ is totally geodesic and Scal +Hessf(ν, ν) ≡
δ;

b) if there exists ε > 0 such that Scal +Hessf(ν, ν) ≥ δ+ ε, then Σ is homeomor-

phic to C and it has finite f -volume, i.e.,
´

Σ
e−fdΣ <∞.

ii) If the bottom of the spectrum of Lf satisfies µ1 ∈ (−∞,−δ) and the f -volume of

Σ is finite, i.e.,
´

Σ
e−fdΣ <∞, then Σ has finite topology. Moreover,

ˆ
Σ

[
1

2
|A|2 +

1

2
H2 + Scal +Hessf(ν, ν)− δ

]
e−fdΣ

≤ 2πχ(Σ)e− infΣ f − (µ1 + δ)

ˆ
Σ

e−fdΣ <∞.

In both situations, we have, in particular, thatˆ
Σ

|A|2e−fdΣ <∞.

Here Scal is the scalar curvature of M3, Hessf is the Hessian tensor of f in M3, and ν

is the outward unitary normal vector field of the immersion.

Proof. In fact, we can use, in Proposition 2.1, p.12,

(5.1) W = −
(

1

2
|A|2 +

1

2
H2 + Scal +Hessf(ν, ν)− δ

)
− (µ1 + δ)

in the proof of item i) and to observe that W+ ≡ 0. In the case ii) we observe that

W+ = −(µ1 + δ). The conclusion comes following the same steps of the proof of Theorem

3.2. �

Theorem 1.4 is an immediate consequence of Theorem 5.1. The proof of Theorem 1.3

we proceed as follows.

Proof of Theorem 1.3. The proof is an immediate consequence of Theorem 5.1, except by

the situation that Σ homeomorphic to C\{0} cannot happen. In fact, if Σ is homeomor-

phic to C\{0}, then χ(Σ) = 0 and thus, by the item ii) of Theorem 5.1, |A|2 ≡ 0, i.e.,

Σ is totally geodesic. Since the totally geodesic surfaces of the Euclidean space are the
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planes, which are homeomorphic to C, we conclude that the case of Σ homeomorphic to

C\{0} cannot happen. �

We conclude the paper proving Theorem 1.5.

Proof of Theorem 1.5. Assume for the sake of contradiction the hyperplane P with multi-

plicity one through the origin is not the unique minimizer among the self-shrinkers. Then

there exists a self-shrinker M such that F (Σ) is at most F (P ) = 1. From Theorem 1.3,

p.688-689 of [7], the finiteness of F (Σ) implies that Σ is proper which implies that it has

polynomial volume growth which implies the integrability in the Lemma. The rest of the

proof follows from Proposition 2.10 in [22]. �
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Instituto de Matemática e Estat́ıstica, Universidade Federal Fluminense, Niterói, RJ,

24020, Brazil

Email address: zhoud@id.uff.br


