
HOPF TYPE THEOREMS FOR SELF-SIMILAR

SOLUTIONS OF CURVATURE FLOWS IN R3
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Abstract. In this paper we prove rigidity results for two-dimensional,
closed, immersed, non-necessarily convex, self-similar solutions of a wide
class of fully non-linear parabolic flows in R3. We show this self-similar
solutions are the round spheres centered at the origin provided it has
genus zero and satisfies a suitable upper pinching estimate for the Gauss-
ian curvature. As applications, we obtain rigidity results for the round
sphere as the only closed, immersed, genus zero, self-similar solution
of several well known flows, as the flow of the powers of mean curva-
ture, the harmonic mean curvature flow and the α-Gaussian curvature
flow for α ∈ (0, 1/4). We remark that our result does not assume any
embeddedness condition.

1. Introduction

The evolution of an embedded hypersurface in Euclidean space by a speci-
fied function of the eigenvalues of its second fundamental form has attracted
mathematicians in many areas. In particular, there are interesting results
for flows by homogeneous symmetric functions of the principal curvatures,
such as mean curvature, harmonic mean curvature, inverse mean curvature
and Gauss curvature flows by many authors in the last three decades, see
[26], [40], [41], [5], [6], [9], [10], [33] and references therein.

All these flows are particular cases of the more general fully non-linear
flow

(1.1)


∂X

∂t
= W (k1, k2)N,

X(·, 0) = X0,

where k1 and k2 are the principal curvatures of the immersions X, N is their
unitary normal vector fields, and W ∈ C1(R2). It is known this flow will be
parabolic if and only if

(1.2)
∂W

∂k1
· ∂W
∂k2

> 0.
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We will use a particular combination of k1 and k2 which will become ap-
parent later. A flow is said to be contracting if W ≥ 0, and expanding if
W ≤ 0. A stationary solution of a classical curvature flow is a W-surface
(Weingarten surface), satisfying the equationW = 0. While nonround Wein-
garten spheres exist (for example, Hopf spheres, see [32]), many results state
that the only Weingarten spheres satisfying some particular relation are
round (cf Chern [16]). We would like to mention that Rosenberg and Sa
Earp [34] obtained examples of special W-surfaces near any Wente torus or
any Kapouleas examples of surfaces with constant mean curvature.

In this paper, we will address to immersions X : Σ → R3 which are
solutions of the second order partial differential equation

(1.3) W (k1, k2) = −λ〈X,N〉, λ ∈ R,

where k1 and k2 are the principal curvatures of the immersion, N is its
unitary normal vector field, and W ∈ C1(R2).

If W is a homogeneous function of degree β > 0, i.e., W (ak1, ak2) =
aβW (k1, k2), a > 0, then the solutions of (1.3) are the self-similar solutions
of the flow (1.1). Equation (1.3) generalizes the mean curvature self-shrinker
equation and will also describe the self-similar solutions of a large class of
curvature flows, as the Gaussian curvature flow, the harmonic mean curva-
ture flow, among others.

Changing the variables x1 = k1 + k2 and x2 = (k1 − k2)2 we can write

(1.4) W (k1, k2) = Ψ(x1, x2) = Ψ(k1 + k2, (k1 − k2)2) = Ψ(H,H2 − 4K),

where K = k1k2 is the Gaussian curvature of the immersion X and H =
k1 + k2 is its mean curvature. Therefore, the equation (1.3) becomes

Ψ(H,H2 − 4K) = −λ〈X,N〉, λ ∈ R.

The main result of this paper is the following

Theorem 1.1. Let X : Σ→ R3 be a closed, immersed surface of genus zero
satisfying

(1.5) Ψ(H,H2 − 4K) = −λ〈X,N〉, λ ∈ R,

where Ψ : R × [0,+∞) → R is a C1 function satisfying ∂Ψ
∂x1
6= 0. If there

exists a real number ε > 0 such that

(1.6) K ≤ 1

4

[
1− ελ2

(
‖X‖2 − 〈X,N〉2

)]
H2,

then X(Σ) is a round sphere centered at the origin and radius satisfying the
equation

λR = Ψ

(
2

R
, 0

)
.

A number of remarks are listed here.

Remark 1.1. The hypothesis (1.6) of Theorem 1.1 is necessary. In fact,
in the Section 3, we prove that, if there exists non-spherical genus zero
rotational surface which is the solution of (1.5), then (1.6) does not hold.
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Remark 1.2. Notice that the equation λR = Ψ
(

2
R , 0

)
may have no solution

for some Ψ and λ. In this case of non existence of solutions, Theorem 1.1 is
considered as a non-existence result.

Remark 1.3. Recall that a W-surface is called special if the relation be-
tween the principal curvatures can be written in the form Ψ(H,H2−4K) = 0
with ∂Ψ

∂x1
6= 0 at every umbilic point. The Chern-Hartman-Winter’s theorem

(see [31] and [16]) says that that if a closed orientable surface Σ of genus
zero is a special W-surface of class C2, then Σ is a sphere. This improves
a theorem of H. Hopf, by removing the analyticity assumptions. Theorem
1.1 recovers the Chern-Hartman-Winter’s theorem for special Weingarten
surfaces by taking λ = 0.

The class of surfaces satisfying (1.6) contains all the closed surfaces under
the pinching condition

K ≤ 1

4
(1− δ)H2, ∀δ > 0.

In fact, for given δ > 0, choose ε ≤ δ
λ2 supΣ(‖X‖2−〈X,N〉2)

. Notice that the

supremum exists since Σ is assumed to be closed. Since the sphere is not
contained in this class we obtain the following non existence result.

Corollary 1.1. There is no closed, immersed solution X : Σ→ R3 of (1.5)
with genus zero, such that ∂Ψ

∂x1
6= 0, and

(1.7) K ≤ 1

4
(1− δ)H2,

for every δ > 0.

Remark 1.4. We can compare Theorem 1.1 with the results of obtained
by McCoy, see [33], Theorem 1.3, p. 320, and Guilfoyle and Klingenberg,
see [29], Theorem 4.7, p. 353. The result of [33] holds for higher dimensions
and for non-convex surfaces and requires more restrictions than Theorem
1.1. The result of [29] requires that the surface is convex, among other
conditions over the derivatives of Ψ.

Remark 1.5. The function W (k1, k2) is homogeneous of degree β ∈ R, if
and only if the function Ψ satisfies

(1.8) Ψ(ax1, a
2x2) = aβΨ(x1, x2), a > 0.

By an abuse of notation, we will call Ψ a homogeneous function of degree
β ∈ R if Ψ satisfies (1.8).

If Ψ is homogeneous of degree β 6= −1 with Ψ(1, 0) > 0, and λ > 0, then
the radius of the sphere of Theorem 1.1 is given by

R =
[
λ−12βΨ(1, 0)

] 1
β+1

.

Remark 1.6. In [25], Theorem 1.12, p .3, Gao, Li and Ma proved that a
strictly convex surface satisfying the equation F (k1, . . . , kn)+C = −λ〈X,N〉
is a sphere, where k1, . . . , kn are the principal curvatures of surface, provided
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C ≤ 0 and F is a degree β homogeneous function which satisfies F >
0, ∂F

∂ki
> 0 and (

∂F

∂ki
kj −

∂F

∂kj
ki

)
(ki − kj)−1 > 0,

n∑
i=1

1

ki

∂ logF

∂ki
y2
i +

n∑
i,j=1

∂2 logF

∂ki∂kj
yiyj > 0,

for every, i, j = 1, . . . , n and (y1, . . . , yn) ∈ Rn.
We observe that Theorem 1.1 holds in the same situation in dimension

2, i.e., for W (k1, k2) = F (k1, k2) + C where F is a degree β homogeneous
function and C ∈ R, only imposing that

∂F

∂k1
+
∂F

∂k2
> 0.

In this case, the radius R of the sphere satisfies

λRβ+1 − CRβ − F (1, 1) = 0.

Remark 1.7. The flow (1.1) is a (weakly) parabolic equation if and only if

∂W

∂k1
· ∂W
∂k2

> 0 (≥ 0),

or equivalently (
∂Ψ

∂x1

)2

− 4x2

(
∂Ψ

∂x2

)2

> 0 (≥ 0).

Notice the hypothesis ∂Ψ
∂x1
6= 0 of Theorem 1.1 assures the parabolicity of

the flow near the umbilical points (x2 = 0), but this result holds even when
the flow is not parabolic.

Now we derive the consequences of Theorem 1.1 for the diverse kind of
flows. The simplest situation is the mean curvature flow, when Ψ(x1, x2) =
x1. This flow is parabolic for every value of the mean curvature H and it
is, by far, the most studied among all parabolic flows. The next result is a
particular case of the result proven by the authors in [2].

Corollary 1.2. Let X : Σ → R3 be a closed, immersed self-shrinker of
genus zero. If there exists a real number ε > 0 such that

(1.9) K ≤ 1

4

[
1− ελ2(‖X‖2 − 〈X,N〉2)

]
H2,

then X(Σ) is a round sphere of radius
√

2/λ and center at the origin.

Remark 1.8. The hypothesis (1.9) of Corollary 1.2 is necessary. In fact,
Drugan, see [21], gave an example of an immersed rotational self-shrinker,
homeomorphic to the sphere, which is not the round sphere. In section 3 we
prove that this example of self-shrinker does not satisfy (1.9).

Our second consequence is for the Hβ-curvature flow, β ∈ R\{0, 1},
∂X

∂t
= HβN.
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This flow is parabolic for H > 0. Schulze, see [37], proved that closed
(weakly) convex hypersurfaces of Rn+1 converges to a point if β ∈ (0, 1)
(β ≥ 1) and Schnürer, see [36], and Schulze, see [38], proved that closed
convex surfaces of R3 converges to a round point for 1 ≤ β ≤ 5. For general
speeds of higher homogeneity, Andrews, see [10], proved that the flow of a
convex surfaces converges to a round point provided it satisfies an initial
pinching condition.

The self-similar solutions of the Hβ-curvature flow satisfy the equation

Hβ = −λ〈X,N〉, λ ∈ R.
Our result characterizes the sphere as the only mean convex (i.e., H 6= 0),
genus zero, closed self-similar solution of the Hβ-curvature flow under an up-
per pinching curvature condition. Notice that the mean convex assumption
is weaker than convexity, since mean convexity admits immersed surfaces
and surfaces with K ≤ 0.

Corollary 1.3. Let X : Σ→ R3 be a closed, immersed, mean convex surface
of genus zero satisfying

(1.10) Hβ = −λ〈X,N〉,
where λ > 0 and β ∈ R\{−1, 0}. If there exists a real number ε > 0 such
that

(1.11) K ≤ 1

4

[
1− ελ2(‖X‖2 − 〈X,N〉2)

]
H2,

then X(Σ) is a round sphere of radius (2βλ−1)
1

β+1 and center at the origin.

Remark 1.9. If β := m
2n−1 ∈ (0, 1), n,m ∈ N, then the hypothesis of mean

convexity in Corollary 1.3 is not necessary. Notice that in this case the flow
is only weakly parabolic, becoming degenerate for the points when H = 0.

The next application of Theorem 1.1 is for the α-harmonic mean curvature
flow

∂X

∂t
=

(
K

H

)α
N,

whose self-similar solitons satisfy the equation(
K

H

)α
= −λ〈X,N〉.

If α ∈ (0,∞), then this flow is (weakly) parabolic for (weakly) convex sur-
faces, being degenerate for the points where K = 0. If we consider values of
α such that K can assume negative values, as α = m

2n−1 , m, n ∈ N, includ-
ing the classical case of α = 1, then the flow is weakly parabolic for every
surface, being degenerate for the points where K = 0 and singular for the
points where H = 0.

For α = 1, the existence of solutions for convex surfaces initial data was
proved by Andrews, see [5], who also showed that convex surfaces flowing by
the harmonic mean curvature converges to a round point in finite time (in
fact, the result of Andrews holds for a more wide class of degree one homo-
geneous functions W ). Dieter, see [20], studied the convergence of the flow
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for the degenerate case K ≥ 0 and H > 0, Caputo and Daskalopoulos, see
[15], and Daskalopoulos and Sesum, see [19], studied the highly degenerate
case, where K and H can be simultaneously zero. The case when K < 0
and H < 0 was studied by Daskalopoulos and Hamilton, see [18].

For α ∈ (0, 1), Anada, see [3], proved the existence of non-round convex
self-similar solutions of the α-harmonic mean curvature flow. After this
findings, in a joint work with Tsutsumi, see [4], he also investigated sufficient
conditions for the α-mean curvature flows converge to a round point.

Our result gives conditions for a closed, mean convex, self-similar solution
with genus zero of the m

2n−1 -harmonic mean curvature flow to be a sphere.
We remark here that the powers m

2n−1 ,m, n ∈ N, allows us to work with
surfaces such that K < 0 at some points, but our technique holds for every
α ∈ (0, 1], if we assume that Σ is weakly convex.

Corollary 1.4. Let X : Σ→ R3 be a closed, immersed, mean convex surface
of genus zero satisfying

(1.12)

(
K

H

) m
2n−1

= −λ〈X,N〉,

where m,n ∈ N, λ > 0, and m
2n−1 ≤ 1. If there exists a real number ε > 0

such that

(1.13) K ≤ 1

4

[
1− ελ2(‖X‖2 − 〈X,N〉2)

]
H2,

then X(Σ) is a round sphere of radius (2
m

2n−1λ)−
2n−1

m−2n+1 , centered at the
origin, if (m,n) 6= (1, 1), and for any radius R > 0, centered at the origin,
with λ = 1

2 , if (m,n) = (1, 1).

The last classical flow we will discuss here and obtain consequences of
Theorem 1.1 is the α-Gaussian curvature flow

∂X

∂t
= KαN,

whose self-similar solutions satisfy the equation

Kα = −λ〈X,N〉.
This flow if (weakly) parabolic if K > 0 (K ≥ 0) being degenerate for the
points where K = 0.

When α = 1, this flow is called Gaussian curvature flow, and was first
introduced by Firey in 1974, see [24], as a model of the wearing process of
convex rolling stones on a beach. He proved also that closed convex surfaces
under this flows converges to a round point when they are symmetric about
the origin. Tso, see [39], for α = 1, and Chow, see [17], for α = 1/n, proved
the convergence to a point of a closed convex hypersurfaces of Rn+1 under the
flow. Andrews, see [7], proved that, for α = 1/(n+ 2), convex hypersurfaces
varying under the flow converges to an ellipsoid. We observe that Calabi,
see [14], early proved that the ellipsoids are the only hypersurfaces satisfying
the equation of the self-similar solutions of the 1

n+2 -Gaussian curvature flow.

The works of Andrews, see [8], [11], and Guan and Ni, see [28], proved that
the flow converges to a self-similar solution for every α ≥ 1/(n + 2). To
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conclude the analysis of the case when α ≥ 1/(n + 2), Brendle, Choi and
Daskalopoulos, see [12], proved that the only self-similar solution of the α-
Gaussian curvature flow for α > 1/(n+2) are the round spheres. In his turn,
if α < 0, then Gerhardt, see [27], proved that the only convex self-similar
solution of the α-Gaussian curvature flow is a round sphere. Moreover, he
proved that the flow converges to a sphere after rescaling.

On the other hand, Andrews, see [8], proved the existence of non-spherical
convex self-similar solutions of the α-Gaussian curvature flow for small α >
0. In particular, in dimension 2, for α ∈ (0, 1/10). This shows that if we want
to characterize the sphere as the only self-similar solution of the α-Gauss
curvature flow for small values of α > 0, then we will need some additional
assumption.

Our result provides sufficient conditions for a self-similar solution of the
α-Gaussian curvature flow, α ∈ (0, 1/4), to be a round sphere.

Corollary 1.5. Let X : Σ→ R3 be a closed, convex surface satisfying

(1.14) Kα = −λ〈X,N〉, α ∈ (0, 1/4), λ > 0.

If there exists a real number ε > 0 such that

(1.15) K ≤ 1

4

[
1− ελ2(‖X‖2 − 〈X,N〉2)

]
H2,

then X(Σ) is a round sphere of radius λ−
1

2α+1 and center at the origin.

Remark 1.10. Since there are examples of closed convex self-similar solu-
tions of the α-Gaussian curvature flow for α ∈ (0, 1/10), given by Andrews,
see [8], at least in this cases some additional hypothesis like (1.15) is neces-
sary to obtain the conclusions of Corollary 1.5.

Remark 1.11. Corollary 1.5 holds in a more general setting: if we choose
values of α which allows negative values of K, as for example α = m

2n−1 ≤
1, m, n ∈ N, then we can assume only that Σ is a closed mean convex
surface with genus zero to obtain the same conclusion, despite the flow is
not parabolic in this case.

In order to illustrate the scope of situations to which the Theorem 1.1
can be applied in the context of the curvature flows, we give here a list of
examples of homogeneous functions W (k1, k2) such that the flow (1.1) is
parabolic including negative values of K.

(i) W (k1, k2) = aH2 + bK, a, b ∈ R. The flow is parabolic for

K > −2a(2a+ b)

b2
H2.

In this case, ∂Ψ
∂x1
6= 0 if and only if H 6= 0, i.e., the surface is mean

convex.
As a particular situation, we have W (k1, k2) = |A|2 = k2

1 + k2
2,

by taking a = 1 and b = −2. In this case, the flow is parabolic for
K > 0, i.e., for convex surfaces. This flow was studied by Schnürer
in [36].
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(ii) W (k1, k2) = aH2α + bKα, a, b > 0, α = m
2n−1 ≥ 1,m, n ∈ N. The

flow is parabolic for

4a2 + 2ab

(
K

H2

)α−1

+ b2
(
K

H2

)2α−1

> 0.

In this case, ∂Ψ
∂x1
6= 0 if and only if H 6= 0, i.e., the surface is mean

convex.
(iii) W (k1, k2) = H

2
3 +bK

1
3 , b ∈ (0, 25/3). The flow is parabolic for K 6= 0

and H 6= 0. In this case, ∂Ψ
∂x1
6= 0 everywhere and it is singular for

K = 0 and H = 0.

2. Proofs of the main Theorem

In the study of the mean curvature flow and the α-Gaussian curvature
flow its was proved that, under some convexity conditions, the solutions of
the flow, when suitably normalized, converge to a self-similar solution. A
solution X(·, t) of (1.1) is called self-similar if it is an homothety of X0, i.e,
if there exists an smooth positive function φ such that φ(0) = 1 and

(2.1) X(·, t) = φ(t)X0.

For this reason, a self-similar solution of (1.1) is also called a homothetic
solution. If W (k1, k2) is a homogeneous function of degree β ∈ R, i.e.,

W (ak1, ak2) = aβW (k1, k2), a > 0,

and X(·, t) = φ(t)X0 is a self-similar solution, then

∂

∂t
[X(p, t)] = W (k1(p, t), k2(p, t))N(p, t),

i.e.,
∂

∂t
[φ(t)X0] = W (φ(t)−1k1(p, 0), φ(t)−1k2(p, 0))N(p, 0).

This gives

φ′(t)X0 = φ(t)−βW (k1(p, 0), k2(p, 0))N(p, 0),

which is equivalent to

φ′(t)φ(t)β〈X0(p), N(p, 0)〉 = W (k1(p, 0), k2(p, 0)).

This implies that φ′(t)φ(t)β is constant, i.e., there exists λ ∈ R such that

(2.2) W (k1(p, 0), k2(p, 0)) = −λ〈X0(p), N(p, 0)〉.
Notice that the sign of −λ is the same of φ′(t). Thus the solution expands
for λ < 0, and shrinks for λ > 0. The solution is stationary if λ = 0. In this
case, we have the so called Weingarten surfaces, i.e., surfaces satisfying the
equation

W (k1, k2) = 0,

see, for example, [32] for more details.
In this paper, we will work with immersions X : Σ → R3 which are

solutions of the second order partial differential equation

(2.3) W (k1, k2) = −λ〈X,N〉, λ ∈ R,
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where X is the position vector and N is the unitary normal vector field of
the immersion X. Changing the variables

x1 = k1 + k2 and x2 = (k1 − k2)2,

we have,

(2.4) W (k1, k2) = Ψ(x1, x2) = Ψ(k1 + k2, (k1 − k2)2) = Ψ(H,H2 − 4K),

K = k1k2 is the Gaussian curvature of X, H = k1 +k2 is its mean curvature,
and Ψ(x1, x2) is a real function of two real variables. We remark that, in
general, we will have at least two different expressions for Ψ in (2.4), one
for each half-space determined by the diagonal k1 = k2, except when W is
symmetric, i.e., W (k1, k2) = W (k2, k1). In this case Ψ can be defined by a
unique expression.

Notice that

∂W

∂k1
=
∂Ψ

∂x1
+ 2(k1 − k2)

∂Ψ

∂x2
and

∂W

∂k2
=
∂Ψ

∂x1
− 2(k1 − k2)

∂Ψ

∂x2
.

It implies that

∂W

∂k1
· ∂W
∂k2

=

(
∂Ψ

∂x1

)2

− 4(k1 − k2)2

(
∂Ψ

∂x2

)2

.

Thus, if Ψ satisfies

(2.5)

(
∂Ψ

∂x1

)2

− 4x2

(
∂Ψ

∂x2

)2

> 0 (resp. ≥ 0),

then the equation

(2.6)
∂X

∂t
(p, t) = Ψ(H(p, t), H(p, t)2 − 4K(p, t))N(p, t)

is parabolic (resp. weakly parabolic). In this case, equation (1.3) becomes

(2.7) Ψ(H,H2 − 4K) = −λ〈X,N〉.

At umbilical points, i.e., k1 = k2,

∂W

∂k1
· ∂W
∂k2

=

(
∂Ψ

∂x1

)2

≥ 0.

Thus, equation (2.6) is always weakly parabolic near umbilical points, and
if we assume that Ψ satisfies

∂Ψ

∂x1
6= 0,

then equation (2.6) will be parabolic near umbilical points.

Remark 2.1. The same condition

∂W

∂k1
· ∂W
∂k1

> 0 (≥ 0)

which assures the (weak) parabolicity of (1.1), also guarantees the (weak)
ellipticity of (1.3). Analogously, the condition (2.5) assures the (weak)
parabolicity of (2.6) and the (weak) ellipticity of (2.7).
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For each point p ∈ Σ, we can take isothermal parameters u and v in a
neighborhood of p, i.e.,

ds2 = ρ(u, v)(du2 + dv2),

where ds2 is the metric of Σ and ρ is a positive smooth function on Σ.
Complexifying the parameters by taking z = u+ iv, we can identify Σ with
a subset of C. In this case, we have

〈Xz, Xz̄〉 =
ρ(z)

2
and ds2 = ρ(z)|dz|2.

Let us denote by

Pdz2 = 〈B(Xz, Xz), N〉dz2

the (2, 0)-part of the second fundamental form of Σ in R3. Here B(X,Y ) :=
∇XY −∇Σ

XY. This quadratic form is also called the Hopf quadratic differ-
ential.

The immersion X satisfies the equations

(2.8)


∇XzXz =

ρz
ρ
Xz + PN,

∇Xz̄Xz =
ρ

4
HN,

∇Xz̄Xz̄ =
ρz̄
ρ
Xz̄ + P̄N,

and

(2.9)


∇XzN = −1

2
HXz −

2

ρ
PXz̄

∇Xz̄N = −2

ρ
P̄Xz −

1

2
HXz̄.

Since
(2.10)

P = 〈∇XzXz, N〉 =
1

4
〈∇Xu−iXvXu − iXv, N〉

=
1

4
[〈∇XuXu, N〉 − 〈∇XvXv, N〉 − i(〈∇XuXv, N〉+ 〈∇XvXu, N〉)]

=
1

4
[II(Xu, Xu)− II(Xv, Xv)− 2iII(Xu, Xv)],

where II is the second fundamental form of Σ in R3, we have P = 0 if and
only if II is umbilical.
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Let e1 = (1/
√
ρ)Xu and e2 = (1/

√
ρ)Xv be an orthonormal frame for TΣ.

Denoting by hij = II(ei, ej), and using (2.10), gives

(2.11)

|P |2 =
1

16

[
(II(Xu, Xu)− II(Xv, Xv))

2 + 4II(Xu, Xv)
2
]

=
ρ2

16

[
(II(e1, e1)− II(e2, e2))2 + 4II(e1, e2)2

]
=
ρ2

16

[
(h11 − h22)2 + 4(h12)2

]
=
ρ2

16
[(h11 + h22)2 − 4(h11h22 − (h12)2)]

=
ρ2

16
(H2 − 4K).

In order to prove main the theorem of this section, we will need the
following result about complex functions which can be found in [1], see also
[22] and [23].

Lemma 2.1. Let h : U ⊂ C→ C be a complex function defined in an open
set U of the complex plane. Assume that

(2.12)

∣∣∣∣∂h∂z̄
∣∣∣∣ ≤ ϕ(z)|h(z)|,

where ϕ is a continuous, non-negative real function. Assume further that
z = z0 ∈ U is a zero of h. Then either h = 0 in a neighbourhood V ⊂ U of
z0, or

h(z) = (z − z0)khk(z0), z ∈ V, k ≥ 1,

where hk(z) is a continuous function with hk(z0) 6= 0.

Remark 2.2. This result uses a weak notion of holomorphy to obtain that
a complex function h(z) with a zero z0 is identically zero in a neighbourhood
of z0 or

(2.13) h(z) = (z − z0)khk(z), z ∈ V, k ≥ 1,

for some complex function hk such that hk(z0) 6= 0. We remark that, when
h(z) is holomorphic, this is a well known property, see [35], p. 208–209. This
property will be crucial to prove our classification theorems since the Hopf
quadratic differential is not necessarily holomorphic for surfaces satisfying
(1.3), p. 2. The existence of a weak notion of holomorphy to conclude (2.13)
was noticed first, as we know, by Carleman in 1933, see [13]. In fact, he
proved that a solution h : U ⊂ C→ C of

∂h

∂z̄
= ah+ bh̄,

does not admits a zero of infinite order except if h = 0. Notice that, if
a = b = 0, then h is holomorphic. Using these ideas, Hartman and Wintner,
see [30] and [31], and Chern, see [16], proved their well known results on the
classification of special Weingarten surfaces.

Now, we are ready to prove Theorem 1.1, p. 2.
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Proof. Let

h(z) = 〈∇XzXz, N〉 = P (z),

be the Hopf differential, where N is the unitary normal vector field of the
immersion. We have

(2.14)

∂h

∂z̄
=

∂

∂z̄
〈∇XzXz, N〉

= 〈∇Xz̄∇XzXz, N〉+ 〈∇XzXz,∇Xz̄N〉
= 〈R(Xz, Xz̄)Xz, N〉+ 〈∇Xz∇Xz̄Xz, N〉+ 〈∇XzXz,∇Xz̄N〉

=
∂

∂z
(〈∇Xz̄Xz, N〉)− 〈∇Xz̄Xz,∇XzN〉+ 〈∇XzXz,∇Xz̄N〉

=
∂

∂z

(ρ
4
H
)
−
〈
ρ

4
HN,−1

2
HXz −

2P

ρ
Xz̄

〉
+

〈
ρz
ρ
Xz + PN,−2P̄

ρ
Xz −

1

2
HXz̄

〉
=
ρ

4
Hz,

where R(Xz, Xz̄)Xz = 0 is the Euclidean curvature tensor. Differentiating
(1.5), p. 2, with respect to z gives

Ψ1Hz + Ψ2(H2 − 4K)z = −λ〈X,N〉z

where, here and after, Ψ1 = ∂Ψ
∂x1

and Ψ2 = ∂Ψ
∂x2

. By using (2.11) and that
Ψ1 6= 0, we have

(2.15)

Hz = −Ψ2

Ψ1
(H2 − 4K)z −

λ

Ψ1
〈X,N〉z

= −Ψ2

Ψ1
(16ρ−2|P |2)z −

λ

Ψ1
〈Xz, N〉 −

λ

Ψ1
〈X,∇XzN〉

= 32
Ψ2

Ψ1
ρ−3ρz|P |2 − 16

Ψ2

Ψ1
ρ−2(P̄Pz + PP̄z)

− λ

Ψ1

〈
X,−1

2
HXz −

2

ρ
PXz̄

〉
= 32

Ψ2

Ψ1
ρ−3ρz|P |2 − 16

Ψ2

Ψ1
ρ−2(P̄Pz + PP̄z)

+
λ

2Ψ1
H〈X,Xz〉+

2λ

ρΨ1
P 〈X,Xz̄〉.

Replacing (2.15) into (2.14) and taking the modulus, we have∣∣∣∣∂h∂z̄
∣∣∣∣ ≤ [8 ∣∣∣∣Ψ2

Ψ1

∣∣∣∣ ρ−2|ρz||P |+ 4

∣∣∣∣Ψ2

Ψ1

∣∣∣∣ ρ−1(|Pz|+ |P̄z|)

+
|λ|

2|Ψ1|
|〈X,Xz̄〉|

]
|h(z)|+ ρ|λ|

8|Ψ1|
|H||〈X,Xz〉|.

Since

X =
2

ρ
〈X,Xz̄〉Xz +

2

ρ
〈X,Xz〉Xz̄ + 〈X,N〉N,
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〈Xz, Xz〉 = 0 = 〈Xz̄, Xz̄〉, 〈Xz, Xz̄〉 = ρ/2, and

|〈X,Xz〉| =
1

2
|〈X,Xu〉 − i〈X,Xv〉|

=
1

2

√
〈X,Xu〉2 + 〈X,Xv〉2

=
1

2
|〈X,Xu〉+ i〈X,Xv〉|

= |〈X,Xz̄〉|,

we have

(2.16)
√
‖X‖2 − 〈X,N〉2 =

2
√
ρ

√
|〈X,Xz〉||〈X,Xz̄〉| =

2
√
ρ
|〈X,Xz〉|.

This gives ∣∣∣∣∂h∂z̄
∣∣∣∣ ≤ [8 ∣∣∣∣Ψ2

Ψ1

∣∣∣∣ ρ−2|ρz||P |+ 4

∣∣∣∣Ψ2

Ψ1

∣∣∣∣ ρ−1(|Pz|+ |P̄z|)

+
|λ|√ρ
4|Ψ1|

√
‖X‖2 − 〈X,N〉2

]
|h(z)|

+
ρ3/2

16|Ψ1|
|λ||H|

√
‖X‖2 − 〈X,N〉2.

On the other hand, the hypothesis (1.6), p. 2,

K ≤ 1

4
[1− ελ2(‖X‖2 − 〈X,N〉2)]H2,

is equivalent to

|H||λ|
√
‖X‖2 − 〈X,N〉2 ≤ 1√

ε

√
H2 − 4K.

This implies

(2.17)

∣∣∣∣∂h∂z̄
∣∣∣∣ ≤ [8 ∣∣∣∣Ψ2

Ψ1

∣∣∣∣ ρ−2|ρz||P |+ 4

∣∣∣∣Ψ2

Ψ1

∣∣∣∣ ρ−1(|Pz|+ |P̄z|)

+
|λ|√ρ
4|Ψ1|

√
‖X‖2 − 〈X,N〉2

]
|h(z)|+ ρ3/2

16|Ψ1|
1√
ε

√
H2 − 4K

≤
[
8

∣∣∣∣Ψ2

Ψ1

∣∣∣∣ ρ−2|ρz||P |+ 4

∣∣∣∣Ψ2

Ψ1

∣∣∣∣ ρ−1(|Pz|+ |P̄z|)

+
|λ|√ρ
4|Ψ1|

√
‖X‖2 − 〈X,N〉2

]
|h(z)|+

√
ρ

4
√
ε|Ψ1|

|h(z)|

=

[
8

∣∣∣∣Ψ2

Ψ1

∣∣∣∣ |ρz|ρ−2|P |+ 4

∣∣∣∣Ψ2

Ψ1

∣∣∣∣ ρ−1(|Pz|+ |P̄z|)

+
|λ|√ρ
4|Ψ1|

√
‖X‖2 − 〈X,N〉2 +

√
ρ

4
√
ε|Ψ1|

]
|h(z)|,

for every z ∈ Σ. Here we have used (2.11) which implies

|h(z)| = ρ

4

√
H2 − 4K.
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Defining ϕ0 as

ϕ0 = 8

∣∣∣∣Ψ2

Ψ1

∣∣∣∣ |ρz|ρ−2|P |+ 4

∣∣∣∣Ψ2

Ψ1

∣∣∣∣ ρ−1(|Pz|+ |P̄z|)

+
|λ|√ρ
4|Ψ1|

√
‖X‖2 − 〈X,N〉2 +

√
ρ

4
√
ε|Ψ1|

we have ∣∣∣∣∂h∂z̄
∣∣∣∣ ≤ ϕ0(z)|h(z)|.

Thus, by Lemma 2.1, either h(z), and thus P is identically zero in a
neighborhood V of a zero z0, or this zero is isolated and the index of a
direction field determined by Im[Pdz2] = 0 is −k/2 (hence negative). If, for
some coordinate neighborhood V of zero, P = 0, this holds for the whole Σ;
otherwise, the zeroes on the boundary of V will contradict Lemma 2.1. In
fact, if V 6= Σ, then its boundary ∂V 6= ∅. Since the set of zeros is a closed
set, the points of ∂V are also zeros of P. Since the points of ∂V are not
isolated, by Lemma 2.1, given z1 ∈ ∂V, there exists another neighborhood
V1 3 z1, such that P = 0 in V1, i.e. z1 is an interior point of the set of zeros
of P. This contradiction implies that V = Σ. On the other hand, if h (and
hence P ) is not identically zero, all zeroes are isolated and have negative
indices. Since Σ has genus zero, by the Poincaré index theorem, the sum of
the indices of the singularities of any field of directions is 2 (hence positive).
This contradiction shows that P is identically zero. Therefore, by (2.11), we
conclude that Σ is totally umbilical, i.e., a round sphere.

If Σ is a sphere and λ 6= 0, we now determine its radius R and its center
x0. First, notice that

(2.18) H =
2

R
and K =

1

R2
.

Since Ψ(H,H2 − 4K) = −λ〈X,N〉, we have

(2.19) 〈X,N〉 = −λ−1Ψ

(
2

R
, 0

)
.

On the other hand, X(Σ) = S2(x0, R) implies X = x0 − RN. This gives
〈X,N〉 = 〈x0, N〉 −R, i.e.,

(2.20) 〈x0, N〉 = R− λ−1Ψ

(
2

R
, 0

)
,

which implies that 〈x0, N〉 is constant. Since x0 is a fixed vector and N
varies over the entire S2(x0, R), we conclude that x0 = 0, i.e., the sphere is
centered at the origin. By using (2.20), we have

0 = R− λ−1Ψ

(
2

R
, 0

)
,

i.e.,

λR = Ψ

(
2

R
, 0

)
.
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In the case when λ = 0, then clearly the radius of the sphere satisfies
Ψ
(

2
R , 0

)
= 0. Since the equation Ψ(H,H2 − 4K) = 0 is invariant by isome-

tries of R3, the center of the sphere can be any point of R3.
�

Now we present the proofs of the corollaries presented in the introduction.

Proof of Corollary 1.3. Just notice that, differentiating (1.10) with respect
to z,

βHβ−1Hz = −λ〈X,N〉z,

i.e,

Hz = −λβ−1H1−β〈X,N〉z.

Thus, if β > 1 we will need to assume that H 6= 0, but when β = m
2n−1 ≤

1,m, n ∈ N, 2n − 1 is odd number, this assumption is not necessary. The
conclusion of the proof then follows, step by step, the proof of Theorem
1.1. �

Proof of Corollary 1.4. Since by notations x1 = H, x2 = H2−4K ≥ 0, then

4K = H2 − x2. Therefore, we consider Ψ(x1, x2) =
(
x1
4 −

x2
4x1

) m
2n−1

. Since

∂Ψ

∂x1
=

m

2n− 1

(
x2

1 − x2

4x1

) m
2n−1

−1(
1

4
+

x2

4x2
1

)
=

m

2n− 1

(
4x1

x2
1 − x2

)1− m
2n−1

(
1

4
+

x2

4x2
1

)
we have, for m

2n−1 ≤ 1,

∂Ψ

∂x1
6= 0 ⇐⇒ H 6= 0.

Notice that ∂Ψ
∂x1

has a singularity at K = 0, but since we need only
(
∂Ψ
∂x1

)−1

in the proof of Theorem 1.1, this singularity will be removable. �

Proof of Corollary 1.5. Notice that 4K = x2
1 − x2. We can take

Ψ(x1, x2) =

(
x2

1 − x2

4

)α
in Theorem 1.1 and observe that

∂Ψ

∂x1
=
αx1

2

(
x2

1 − x2

4

)α−1

6= 0,

since Σ is convex. �
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3. Examples

In this section we prove that hypothesis (1.6), p. 2, of Theorem 1.1 is
necessary. Since the expression in (1.6)

K ≤ 1

4
[1− ελ2(‖X‖2 − 〈X,N〉2)]H2

is equivalent to

|H|
√
‖X‖2 − 〈X,N〉2√
H2 − 4K

≤ 1

|λ|
√
ε
,

the existence of a constant ε > 0 such that (1.6) holds is equivalent to the
boundedness of

(3.1)
|H|
√
‖X‖2 − 〈X,N〉2√
H2 − 4K

.

Notice that the only possibility for (3.1) to be unbounded is at the umbilical
points, provided H2 − 4K = 0 in these points.

We know that, if a rotational surface Σ intersects the axis of rotation
orthogonally, then this intersection point is umbilical. If Σ is a rotational
surface of genus zero, then there are two of these points. The aim of this
section is to show that, if there exists any non spherical rotational surface
satisfying

Ψ(H,H2 − 4K) = −λ〈X,N〉
which intersects the rotation axis orthogonally, then (3.1) is unbounded in
the neighborhood of these umbilical points. Here we will assume that Ψ is
homogeneous of degree β ∈ R, i.e., Ψ(ax1, a

2x2) = aβΨ(x1, x2), a > 0, and
∂Ψ
∂x1
6= 0.

Figure 1. Draft of the profile curve of the Drugan’s genus
zero self-shrinker of the mean curvature flow, see [21]. The
surface is obtained by rotating the profile curve around the
vertical axis. The intersection of the profile curve with the
rotation axis gives two isolated umbilical points which do not
satisfy the hypothesis (1.9) of Corollary 1.2
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In order to prove our claim let us recall some properties of rotational
surfaces in R3. Let

X(t, θ) = (x(t) cos θ, x(t) sin θ, y(t))

be a parametrization of a rotational surface, where t ∈ [0, η), η > 0, and
θ ∈ R. The principal curvatures of Σ = X([0, η)× R) are given by

k1(t) =
−y′(t)

x(t)
√

(x′(t))2 + (y′(t))2
and k2(t) =

x′′(t)y′(t)− x′(t)y′′(t)
((x′(t))2 + (y′(t))2)3/2

.

If the profile curve is a graph (x, γ(x)), then we have

k1(x) =
−γ′(x)

x
√

1 + (γ′(x))2
and k2(x) =

−γ′′(x)

(1 + (γ′(x))2)3/2
.

From now on, we will consider that the profile curve of Σ is locally a graph
(x, γ(x)) near the umbilical point x = 0. Next, we will find the expressions
of (3.1) in therms of γ. First, we have

H = k1 + k2 = − 1

(1 + (γ′(x))2)3/2

[
γ′(x)

x
(1 + (γ′(x))2) + γ′′(x)

]
and

H2 − 4K = (k1 − k2)2 =
1

(1 + (γ′(x))2)3

[
γ′(x)

x
(1 + (γ′(x))2)− γ′′(x)

]2

.

Since the inward unit normal N of Σ is given by

N =
1√

1 + (γ′(x))2
(γ′(x) cos θ, γ′(x) sin θ,−1),

we have

‖X‖2 − 〈X,N〉2 = x2 + (γ(x))2 − (xγ′(x)− γ(x))2

1 + (γ′(x))2

=
(x+ γ(x)γ′(x))2

1 + (γ′(x))2
.

Therefore
(3.2)

|H|
√
‖X‖2 − 〈X,N〉2√
H2 − 4K

=

∣∣∣γ′(x)
x (1 + (γ′(x))2) + γ′′(x)

∣∣∣ |x+ γ(x)γ′(x)|∣∣∣γ′(x)
x (1 + (γ′(x))2)− γ′′(x)

∣∣∣√1 + (γ′(x))2
.

In order to conclude our analysis, we will need the Taylor expansion of
γ satisfying the initial condition γ(0) = b > 0 and γ′(0) = 0. This second
condition means that Σ intersects the rotation axis (the z axis) orthogonally.

In our situation, equation (1.5), p. 2, becomes

Ψ

−
[
γ′(x)
x (1 + (γ′(x))2) + γ′′(x)

]
(1 + (γ′(x))2)3/2

,

[
γ′(x)
x (1 + (γ′(x))2)− γ′′(x)

]2

(1 + (γ′(x))2)3


= −λ xγ

′(x)− γ(x)√
1 + (γ′(x))2

.
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Assuming that Ψ is homogeneous of degree β, i.e.,

Ψ(ax1, a
2x2) = aβΨ(x1, x2),

we have

(3.3)

Ψ

(
−γ′(x)

x (1 + (γ′(x))2)− γ′′(x),
[
γ′(x)
x (1 + (γ′(x))2)− γ′′(x)

]2
)

(1 + (γ′(x))2)3β/2

= −λ xγ
′(x)− γ(x)√
1 + (γ′(x))2

.

Notice that, since limx→0+
γ′(x)
x = γ′′(0), equation (3.3) is not singular at

x = 0.

Proposition 3.1. Let γ(x) be the solution of (3.3) with the initial conditions
γ(0) = b > 0 and γ′(0) = 0, where we assume that Ψ is homogeneous of
degree β and ∂Ψ

∂x1
6= 0 in a neighborhood of x = 0. Then, near x = 0, we have

(3.4) γ(x) = b+ cx2 +O(x4),

where c = −1
4

(
λb

Ψ(1,0)

)1/β
.

Proof. First, taking x→ 0+ in (3.3), we obtain

Ψ(−2γ′′(0), 0) = −λb =⇒ (−2γ′′(0))βΨ(1, 0) = λb,

i.e.,

(3.5) γ′′(0) = −1

2

(
λb

Ψ(1, 0)

)1/β

:= 2c.

Let

γ(x) = b+ cx2 + a3x
3 + a4x

4 +O(x5)

be the Taylor expansion of γ(x) near x = 0. Therefore, we have

γ′(x) = 2cx+ 3a3x
2 + 4a4x

3 +O(x4)

and

γ′′(x) = 2c+ 6a3x+ 12a4x
2 +O(x3).

This implies
(3.6)

−γ
′(x)

x
(1 + (γ′(x))2)− γ′′(x) = −(2c+ 3a3x+ 4a4x

2 +O(x3))×

× (1 + 4c2x2 +O(x3))

− (2c+ 6a3x+ 12a4x
2 +O(x3))

= −4c− 9a3x− 8(c3 + 2a4)x2 +O(x3),

i.e.,

(3.7)
γ′(x)

x
(1 + (γ′(x))2)− γ′′(x) = −3a3x+ 8(c3 − a4)x2 +O(x3),
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and

(3.8)
xγ′(x)− γ(x) = x(2cx+ 3a3x

2 +O(x3))− (b+ cx2 +O(x3))

= −b+ cx2 +O(x3).

Replacing (3.7) and (3.8) into (3.3), gives
(3.9)
Ψ
(
−4c− 9a3x− 8(c3 + 2a4)x2 +O(x3), [−3a3x+ 8(c3 − a4)x2 +O(x3)]2

)
= −λ(1 + 4c2x2 +O(x3))

3β−1
2 (−b+ cx2 +O(x3))

Taking the derivative in (3.9),

− ∂Ψ

∂x1
· (9a3 + 16(c3 + 2a4)x+O(x2)) +

∂Ψ

∂x2
· (18a2

3x+O(x2))

= −λ
(

3β − 1

2

)
(1 + 4c2x2 +O(x3))

3
2

(β−1)×

× (8c2x+O(x2))(−b+ cx2 +O(x3))

− λ(1 + 4c2x2 +O(x3))
3β−1

2 (2cx+O(x2)).

implies that, at x = 0,

−9a3
∂Ψ

∂x1
= 0 =⇒ a3 = 0,

since ∂Ψ
∂x1
6= 0 at x = 0 by hypothesis. Thus

(3.10) γ(x) = b+ cx2 + a4x
4 +O(x5),

where c is given by (3.5). �

The main result of the this section is the following

Proposition 3.2. Let Σ be a (piece of a) rotational surface of R3 satisfying

Ψ(H,H2 − 4K) = −λ〈X,N〉, λ ∈ R\{0},

where Ψ satisfies Ψ(ax1, a
2x2) = aβΨ(x1, x2), a > 0, β ∈ R, and ∂Ψ

∂x1
6= 0.

If Σ intersects the axis of rotation orthogonally and is not a (piece of a)
sphere centered at the origin, then

|H|
√
‖X‖2 − 〈X,N〉2√
H2 − 4K

is unbounded in a neighborhood of the umbilical point which intersects the
axis of rotation.
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Proof. By replacing (3.4) in (3.2) (in order to simplify the calculations we
can use (3.6) and (3.7) for a3 = 0), we have

|H|
√
‖X‖2 − 〈X,N〉2√
H2 − 4K

=
|4c+ 8(c3 + 2a4)x2 +O(x3)||x+ (b+ cx2 +O(x4))(2cx+O(x3))|

|8(c3 − a4)x2 +O(x3)|
√

1 + 4c2x2 +O(x3)

=
|4c+ 8(c3 + 2a4)x2 +O(x3)||1 + 2bc+O(x2)|
x|8(c3 − a4) +O(x)|

√
1 + 4c2x2 +O(x3)

:=
F̃ (x)

x
,

where F̃ (0) = c(1+2bc)
2(c3−a4)

6= 0 if and only if 1 + 2bc 6= 0. But

1 + 2bc = 0 ⇐⇒ 1 =
b

2

(
λb

Ψ(1, 0)

)1/β

,

i.e.,

b
1+ 1

β =
2Ψ(1, 0)

1
β

λ
1
β

.

On the other hand, the sphere centered at the origin and radius b satisfies

Ψ

(
2

b
, 0

)
= λb ⇐⇒

(
2

b

)β
Ψ(1, 0) = λb

⇐⇒ b1+β =
2β

λ
Ψ(1, 0)

⇐⇒ b
1+ 1

β =
2Ψ(1, 0)

1
β

λ
1
β

.

Thus, Σ and S2(b) has a commom point at x = 0. Since the profile curve of
both surfaces has a horizontal tangent at x = 0, by the uniqueness theorem
for ordinary differential equations, we conclude that Σ = S2(b) in a neigh-

borhood of x = 0. Therefore, if Σ is not a sphere, then F̃ (0) 6= 0. Thus, near
zero,

|H|
√
‖X‖2 − 〈X,N〉2√
H2 − 4K

=
F̃ (x)

x

is unbounded. �
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Instituto de Matemática, Universidade Federal de Alagoas, Maceió, AL,
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