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Abstract. We obtain some nonexistence results for complete noncompact
stable hypersurfaces with nonnegative constant scalar curvature in Euclidean
spaces. As a special case we prove that there is no complete noncompact
strongly stable hypersurface M in R4 with zero scalar curvature S2, nonzero
Gauss-Kronecker curvature and finite total curvature (i.e.

∫
M |A|3 < +∞).

1. Introduction

In this paper we study the complete noncompact stable hypersurfaces with con-
stant scalar curvature in Euclidean spaces. It has been proved by Cheng and Yau
[CY] that any complete noncompact hypersurfaces in the Euclidean space with con-
stant scalar curvature and nonnegative sectional curvature must be a generalized
cylinder. Note that the assumption of nonnegative sectional curvature is a strong
condition for hypersurfaces in the Euclidean space with zero scalar curvature since
the hypersurface has to be flat in this case. Let Mn be a complete orientable Rie-
mannian manifold and let x : Mn → Rn+1 be an isometric immersion into the
Euclidean space Rn+1 with constant scalar curvature. We can choose a global unit

normal vector field N , and the Riemannian connections ∇ and ∇̃ of M and Rn+1,
respectively, are related by

∇̃XY = ∇XY + 〈A(X), Y 〉N,

where A is the second fundamental form of the immersion, defined by

A(X) = −∇̃XN.

Let λ1, ..., λn be the eigenvalues of A. The r-mean curvature of the immersion
in a point p is defined by

Hr =
1(
n
r

) ∑
i1<...<ir

λi1 ...λir =
1(
n
r

)Sr,

where Sr is the r-symmetric function of the λ1, ..., λn, H0 = 1 and Hr = 0, for
all r ≥ n + 1. For r = 1, H1 = H is the mean curvature of the immersion, in
the case r = 2, H2 is the normalized scalar curvature, and for r = n, Hn is the
Gauss-Kronecker curvature.
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It is well-known that hypersurfaces with constant scalar curvature are critical
points for a geometric variational problem, namely, that associated to the functional

(1) A1(M) =

∫
M

S1 dM,

under compactly supported variations that preserve volume. Let M be a hyper-
surface in the Euclidean space with constant scalar curvature. Following [AdCE],
when the scalar curvature is zero, we say that a regular domain D ⊂ M is stable

if the critical point is such that ( d
2A1

dt2 )t=0 ≥ 0 for all variations with compact sup-
port in D, and when the scalar curvature is nonzero, we say that a regular domain

D ⊂ M is strongly stable if the critical point is such that ( d
2A1

dt2 )t=0 ≥ 0, for all
variations with compact support in D. It is natural to study the global properties of
hypersurfaces in the Euclidean space with constant scalar curvature. For example,
we have the following open question (see 4.3 in [AdCE]).

Question 1.1. Is there any stable complete hypersurface M in R4 with zero scalar
curvature and nonzero Gauss-Kronecker curvature?

We have a partial answer to Question 1.1.

Theorem A (see Theorem 3.1). There is no complete noncompact stable hyper-
surface M in Rn+1 with zero scalar curvature S2 and 3-mean curvature S3 �= 0
satisfying

(2) lim
R→+∞

∫
BR

S3
1

R2
= 0,

where BR is the geodesic ball in M .

When S2 = 0, S2
1 = |A|2 we have

Corollary B. There is no complete noncompact stable hypersurface M in R4 with
zero scalar curvature S2, nonzero Gauss-Kronecker curvature and finite total cur-
vature (i.e.

∫
M

|A|3 < +∞).

We remark that Shen and Zhu (see [SZ]) proved that a complete stable min-
imal n-dimensional hypersurface in Rn+1 with finite total curvature must be a
hyperplane. The above corollary can be seen as a similar result in dimension 3 for
hypersurfaces with zero scalar curvature.

We also prove the following result for hypersurfaces with positive constant scalar
curvature in Euclidean space.

Theorem C (see Theorem 3.2). There is no complete immersed strongly stable
hypersurface Mn → Rn+1, n ≥ 3, with positive constant scalar curvature and
polynomial growth of 1-volume; that is

lim
R→∞

∫
BR

S1dM

Rn
< ∞,

where BR is a geodesic ball of radius R of Mn.

As a consequence of the properties of a graph with constant scalar curvature, we
have the following corollary:

Corollary D (see Corollary 4.1). Any entire graph on Rn with nonnegative con-
stant scalar curvature must have zero scalar curvature.
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This can be compared with a result of Chern [Ch], which says any entire graph
on Rn with constant mean curvature must be minimal. It has been known by a
result of X. Cheng in [Che] (see also [ENR]) that any complete noncompact stable
hypersurface in Rn+1 with constant mean curvature must be minimal if n < 5. It
is natural to ask that any complete noncompact stable hypersurface in Rn+1 with
nonnegative constant scalar curvature must have zero scalar curvature.

It should be remarked that Chern [Ch] proved that there is no entire graph on
Rn with Ricci curvature less than a negative constant. We don’t know whether
there exists an entire graph on Rn with constant negative scalar curvature.

The rest of this paper is organized as follows: we include some results and
definitions which will be used in the proof of our theorems in Section 2. The proof
of main results are given in Section 3, and Section 4 is an appendix in which we
prove some stability properties for graphs with constant scalar curvature in the
Eucildean space.

2. Some stability and index properties

for hypersurfaces with S2 = const.

We introduce the r’th Newton transformation, Pr : TpM → TpM , which is
defined inductively by

P0 = I,
Pr = SrI −A ◦ Pr−1, r ≥ 1.

The following formulas are useful in the proof (see [Re], Lemma 2.1):

trace(Pr) = (n− r)Sr,(3)

trace(A ◦ Pr) = (r + 1)Sr+1,(4)

trace(A2 ◦ Pr) = S1Sr+1 − (r + 2)Sr+2.(5)

From [AdCC] we have the second variation formula for hypersurfaces in a space
form of constant curvature c, Qn+1

c , with constant 2-mean curvature:
(6)
d2A1

dt2
|t=0=

∫
D

〈P1(∇f),∇f〉dM−
∫
D

(S1S2−3S3+c(n−1)S1)f
2dM, ∀f ∈C∞

c (D).

Definition 2.1. When S2 = 0 and c = 0, M is stable if and only if

(7)

∫
M

〈P1(∇f),∇f〉dM ≥ −3

∫
M

S3f
2dM,

for any f ∈ C∞
c (M). One can see that if P1 ≡ 0, then S3 = 0 and M is stable.

When S2 = const. �= 0, M is stable if and only if∫
D

〈P1(∇f),∇f〉dM ≥
∫
D

(S1S2 − 3S3 + c(n− 1)S1)f
2dM,

for all f ∈ C∞
c (M) and

∫
M

fdM = 0. We say that M is strongly stable if and only
if the above inequality holds for all f ∈ C∞

c (M).

Similar to minimal hypersurface we can also define the index I for hypersurfaces
with constant scalar curvature. Given a relatively compact domain Ω ⊂ M , we
denote by Ind 1(Ω) the number of linearly independent normal deformations with
support on Ω that decrease A1. The index of the immersion is defined as

(8) Ind 1(M) := sup{Ind 1(Ω)
∣∣ Ω ⊂ M, Ω relatively compact}.
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M is strongly stable if Ind 1(M) = 0. The following result has been shown in [El].

Lemma 2.1. Let Mn → Qn+1
c be a noncompact hypersurface with S2 = const. > 0.

If M has finite index, then there exists a compact set K ⊂ M such that M \K is
strongly stable.

For hypersurfaces with constant mean curvature, do Carmo and Zhou [dCZ]
proved that

Theorem 2.1. Let x : Mn → M
n+1

be an isometric immersion with constant
mean curvature H. Assume M has subexponential volume growth and finite index.
Then there exists a constant R0 such that

H ≤ −RicM\BR0
(N),

where N is a smooth normal vector field along M and Ric(N) is the Ricci curvature
of M in the normal vector N .

The technique in [dCZ] was generalized by Elbert [El] to prove the following
result:

Theorem 2.2. Let x : Mn → Q(c)n+1 be an isometric immersion with S2 =
const. > 0. Assume that Ind 1M < ∞ and that the 1-volume of M is infinite and
has polynomial growth. Then c is negative and

S2 ≤ −c.

In particular, this theorem implies that when c = 0 the hypersurfaces in the
above theorem must have nonpositive scalar curvature.

3. Proof of the theorems

When S2 = 0 we know that |S1|2 = |A|2. Thus, if S3 �= 0, we have that |A|2 > 0.
Hence S1 �= 0 and we can choose an orientation such that P1 is semi-positive
definite. Since

|
√
P1A|2 = trace(A2 ◦ P1)

= −3S3,

then, when c = 0, M is stable if

(9)

∫
M

〈P1(∇f),∇f〉dM ≥
∫
M

|
√
P1A|2f2dM,

for any f ∈ C∞
c (M).

When S2 = 0, we have the following inequality, which is essentially due to Cheng
and Yau [CY] (see also Lemma 4.1 in [AdCC] or Lemma 3.2 in [Li]):

(10) |∇A|2 − |∇S1|2 ≥ 0.

In the following lemma, we characterize the equality case in some special case.

Lemma 3.1. Let Mn(n ≥ 3) be a nonflat connected immersed 1-minimal hyper-
surface in Rn+1. If |∇A|2 = |∇S1|2 holds on all nonvanishing points of |A| in M ,
then each component of M with |A| �= 0 must be a cylinder over a curve.
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Proof. To prove our lemma we recall the computations in [SSY]. Choose a frame
at p so that the second fundamental form is diagonalized. We have |A|2 =

∑
i h

2
ii

and ∑
i,j,k

h2
ijk − |∇|A||2

= [(
∑
i,j

h2
ij)(

∑
s,t,k

h2
stk)−

∑
k

(
∑
i,j

hijhijk)
2](

∑
i,j

h2
ij)

−1

=
1

2

∑
i,j,k,s,t

(hijhstk − hsthijk)
2|A|−2

=
1

2

⎡
⎣ ∑
i,k,s,t

(hiihstk − hsthiik)
2 +

∑
s

h2
ss(

∑
k

∑
i �=j

h2
ijk)

⎤
⎦ |A|−2

=
1

2

⎡
⎣∑
i,k,s

(hiihssk − hsshiik)
2

⎤
⎦ |A|−2 + 2

∑
i �=j

h2
iij +

∑
i �=j,j �=k,i �=k

h2
ijk.(11)

The right hand side of the above equation is nonnegative and zero if and only if all
terms on the right hand side of the last equation are zero. Suppose x : M → Rn+1

is the 1-minimal immersion. Since M is not a hyperplane, then |A| is a nonnegative
continuous function which does not vanish identically. Let p be such a point such
that |A|(p) > 0. Then |A| > 0 in a connected open set U containing p. The equality
in (10) implies

hjji = 0, for all j �= i,

hijk = 0, for all j �= i, j �= k, k �= i,

hiihssk = hsshiik, for all i, s, k.

So we have hjij = 0, for all j �= i, and from the last equation we claim at most one
i such that hiii �= 0. Otherwise, without the loss of generality we assume h111 �= 0
and h222 �= 0; we have h11h22k = h22h11k for all k. This implies h11 = h22 = 0
by choosing k = 1, 2. Using the third formula again we have hjjh111 = h11hjj1 for
j = 3, . . . , n. Hence hjj = 0 for all j = 3, . . . , n, which contradicts |A| �= 0.

We now assume h111 �= 0; by continuity we can also assume h11 �= 0. From the
last line of the above equation, we have h11hss1 = hssh111 for s �= 1. Hence hss = 0
for all s �= 1. This implies that M is a cylinder over a curve. �

We are now ready to prove

Theorem 3.1. There is no complete noncompact stable hypersurface in Rn+1 with
S2 = 0 and S3 �= 0 satisfying

lim
R→+∞

∫
BR

S3
1

R2
= 0.

Proof. Assume for the sake of contradiction that there is such a hypersurface M .
From Lemma 3.7 in [AdCC], we have

(12) L1S1 = |∇A|2 − |∇S1|2 + 3S1S3.
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Since for any φ ∈ C∞
c (M),∫

M

〈P1(∇(φS1)),∇(φS1)〉dM

=

∫
M

〈P1((∇φ)S1 + φ∇S1), (∇φ)S1 + φ∇S1〉dM

=

∫
M

〈P1(∇φ),∇φ〉S2
1dM + 2

∫
M

〈P1(∇φ),∇S1〉φS1dM

+

∫
M

φ2〈P1(∇S1),∇S1〉dM,

using (12) we have∫
M

φ2S1(|∇A|2 − |∇S1|2)dM =

∫
M

(L1S1 − 3S1S3)φ
2S1dM

= −
∫
M

〈P1(∇S1),∇(φ2S1)〉dM −
∫
M

3S3φ
2S2

1dM

= −
∫
M

φ2〈P1(∇S1),∇S1〉dM − 2

∫
M

〈P1(∇φ),∇S1〉φS1dM

−
∫
M

3S3φ
2S2

1dM

= −
∫
M

〈P1(∇(φS1)),∇(φS1)〉dM +

∫
M

〈P1(∇φ),∇(φ)〉S2
1dM

−
∫
M

3S3φ
2S2

1dM

≤
∫
M

〈P1(∇φ),∇φ〉S2
1dM

≤ (n− 1)

∫
M

|∇φ|2S3
1dM,

for any φ ∈ C∞
c (M). Here we have used the stability inequality (7) in the seventh

line and we use the following consequence of (3) in the last inequality:

(13) (n− 1)S1|∇φ|2 ≥ 〈P1(∇φ),∇φ〉.

We can choose φ as

φ(x) =

⎧⎨
⎩

2R−r(x)
R , on B2R \BR;

1, on BR;
0, on M \B2R.

Thus from the choice of φ we have S1(|∇A|2−|∇S1|2) ≡ 0. Therefore the elipticity
of L1 implies L1S1 = 3S1S3. From Lemma 3.1, M must be a cylinder over a curve,
which contradicts S3 �= 0. The proof is complete. �

The following lemma is of some independent interest, and we include it here
since its second part is useful in the proof of Theorem 3.2.

Lemma 3.2. Let M be a complete immersed hypersurface in Qn+1
c with positive

constant scalar curvature S2 > −n(n−1)
2 c and S1 �= 0.
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1) If M is strongly stable outside a compact subset, then either M has finite
1-volume or

lim
R→+∞

1

R2

∫
BR

S1 = +∞.

2) If M is strongly stable, then

lim
R→+∞

1

R2

∫
BR

S1 = +∞.

In particular M has infinite 1-volume.

Proof. We can assume that there exists a geodesic ball BR0
⊂ M such that M \BR0

is strongly stable. That is,

(14)

∫
M

(S1S2 − 3S3 + c(n− 1)S1)f
2dM ≤

∫
M

〈P1(∇f),∇f〉dM,

for all f ∈ C∞
c (M \BR0

).
Now, since S2 > 0, we have (see [AdCR], p. 392)

H1H2 ≥ H3

and

H1 ≥ H
1/2
2 .

By using S1 = nH1, S2 =
n(n− 1)

2
H2 and S3 =

n(n− 1(n− 2)

6
H3, we obtain that

(n− 2)

n
S1S2 ≥ 3S3;

that is,

(15) −3S3 ≥ − (n− 2)

n
S1S2.

We also have that
S1

n
≥

(
2S2

n(n− 1)

)1/2

,

which implies

(16) S1 ≥
(

2n

n− 1

)1/2

S
1/2
2 .

By using inequality (15) in (14), we obtain that∫
M

(
S1S2 −

n− 2

n
S1S2 + c(n− 1)S1

)
f2dM ≤

∫
M

〈P1(∇f),∇f〉dM ;

that is, ∫
M

(
S2 +

n(n− 1)c

2

)
S1f

2dM ≤ n

2

∫
M

〈P1(∇f),∇f〉dM.

By using (13), we obtain that

(n− 1)

∫
M

S1|∇f |2dM ≥
∫
M

〈P1(∇f),∇f〉dM.

Therefore, there exists a constant C > 0 such that

(17)

∫
M

S1|∇f |2dM ≥ C

∫
M

S1f
2dM.
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1) When M is strongly stable outside BR0
we can choose f as

f(x) =

⎧⎪⎪⎨
⎪⎪⎩

r(x)−R0, on BR0+1 \BR0
;

1, on BR+R0+1 \BR0+1;
2R+R0+1−r(x)

R , on B2R+R0+1 \BR+R0+1;
0, on M \B2R+R0+1,

where r(x) is the distance function to a fixed point. Then

1

R2

∫
B2R+R0+1\BR+R0+1

S1dM +

∫
BR0+1\BR0

S1dM ≥ C

∫
BR+R0+1\BR0+1

S1dM.

If the 1-volume is infinite, we can choose R large enough such that

C

∫
BR+R0+1\BR0+1

S1dM >

∫
BR0+1\BR0

S1dM ;

hence

lim
R→+∞

1

R2

∫
B2R+R0+1\BR+R0+1

S1dM = +∞.

2) When M is strongly stable we can choose a simpler test function f as

f(x) =

⎧⎨
⎩

1, on BR;
2R−r(x)

R , on B2R \BR;
0, on M \B2R,

which implies that when S1 �= 0,

lim
R→+∞

1

R2

∫
B2R

S1dM = +∞.

The proof is complete. �

Theorem 3.2. There is no complete immersed strongly stable hypersurface Mn →
Rn+1, n ≥ 3, with positive constant scalar curvature and polynomial growth of
1-volume; that is,

lim
R→∞

∫
BR

S1dM

Rn
< ∞,

where BR is a geodesic ball of radius R of Mn.

Proof. Suppose that M is a completely immersed strongly stable hypersurface
Mn → Rn+1, n ≥ 3, with positive constant scalar curvature. From Theorem 2.2
it suffices to show that the 1-volume

∫
M

S1dM is infinite, which is part (2) of
Lemma 3.2. �

4. Graphs with S2 = const. in Euclidean space

In this section we include some stability properties and estimates for entire
graphs on Rn which may be known to experts but may not be easy to find a
reference for. Using these facts we give the proof of Corollary 4.1. Let Mn be a
hypersurface of Rn+1 given by a graph of a function u : Rn → R of class C∞(Rn).
For such hypersurfaces we have:
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Proposition 4.1. Let Mn be a graph of a function u : Rn → R of class C∞(Rn).
Then

(1) If S2 = 0 and S1 does not change sign on M , then Mn is a stable hyper-
surface.

(2) If M has S2 = C > 0, then Mn is strongly stable.

Proof. Consider f : M → R a C∞ function with compact support and let W =√
1 + |∇u|2. In order to calculate 〈P1(∇f),∇f〉, write g = fW . Thus

〈P1(∇f),∇f〉 = 〈P1(∇(
g

W
)),∇(

g

W
)〉

= 〈P1(g∇
1

W
+∇g

1

W
), g∇(

1

W
) +

1

W
∇g〉

= 〈gP1(∇
1

W
) +

1

W
P1(∇g), g∇(

1

W
) +

1

W
∇g〉

= g2〈P1(∇
1

W
),∇ 1

W
〉+ g

W
〈P1(∇

1

W
),∇g〉

+
g

W
〈P1(∇g),∇ 1

W
〉+ 1

W 2
〈P1(∇g),∇g〉.

By using the fact that P1 is selfadjoint, we have
(18)

〈P1(∇f),∇f〉 = g2〈P1(∇
1

W
),∇ 1

W
〉+ 2

g

W
〈P1(∇

1

W
),∇g〉+ 1

W 2
〈P1(∇g),∇g〉.

On the other hand, if {e1, ..., en} is a geodesic frame along M ,

div(fgP1(∇
1

W
))

=
n∑

i=1

〈∇ei(fgP1(∇
1

W
)), ei〉

=

n∑
i=1

〈fgiP1(∇
1

W
) + figP1(∇

1

W
) + fg∇ei(P1(∇

1

W
)), ei〉

=

n∑
i=1

{fgi〈P1(∇
1

W
), ei〉+ fig〈P1(∇

1

W
), ei〉+ fg〈∇ei(P1(∇

1

W
)), ei〉}.

Since f =
g

W
, we get

fi = gi
1

W
+ g

(
1

W

)
i

;

that is,

gfi = ggi
1

W
+ g2

(
1

W

)
i

= fgi + g2
(

1

W

)
i

.
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Hence,

div(fgP1(∇
1

W
))

=

n∑
i=1

{fgi〈P1(∇
1

W
), ei〉+ (fgi + g2

(
1

W

)
i

)〈P1(∇
1

W
), ei〉}+ fgL1(

1

W
)

=

n∑
i=1

{2fgi〈P1(∇
1

W
), ei〉+ g2

(
1

W

)
i

〈P1(∇
1

W
), ei〉}+ fgL1(

1

W
)

= 2f〈P1(∇
1

W
),∇g〉+ g2〈P1(∇

1

W
),∇(

1

W
)〉+ fgL1(

1

W
)

= 2
g

W
〈∇ 1

W
,P1(∇g)〉+ g2〈P1(∇

1

W
),∇(

1

W
)〉+ f2WL1(

1

W
).

Thus,
(19)

2
g

W
〈∇ 1

W
,P1(∇g)〉 = div(fgP1(∇

1

W
))− g2〈P1(∇

1

W
),∇(

1

W
)〉 − f2WL1(

1

W
).

Now, by using (19) in equation (18), we get

〈P1(∇f),∇f〉 = div(fgP1(∇
1

W
))− f2WL1(

1

W
) +

1

W 2
〈P1(∇g),∇g〉.

Now, the divergence theorem implies that∫
M

〈P1(∇f),∇f〉dM = −
∫
M

f2WL1(
1

W
)dM +

∫
M

1

W 2
〈P1(∇g),∇g〉dM.

Choose the orientation of M in such way that S1 ≥ 0. Since S2
1 − |A|2 = 2S2 ≥ 0,

we obtain that S1 ≥ |A|. Thus, 〈P1(∇g),∇g〉 = S1|∇g|2 − 〈A∇g,∇g〉 ≥ (S1 −
|A|)|∇g|2 ≥ 0, which implies that

(20)

∫
M

〈P1(∇f),∇f〉dM ≥ −
∫
M

f2WL1(
1

W
)dM.

When S2 is constant, we will use the following formula proved by Reilly (see [Re],
Proposition C):

L1(
1

W
) = L1(〈N, en+1〉) = −(S1S2 − 3S3)〈N, en+1〉 = −(S1S2 − 3S3)

1

W
,

where N is the normal vector of M and en+1 = (0, ..., 0,±1), according to our
choice of the orientation of M .

Thus, ∫
M

〈P1(∇f),∇f〉dM ≥
∫
M

(S1S2 − 3S3)f
2dM

for all functions f with compact support. Hence M is stable if S2 = 0 and strongly
stable in the case S2 �= 0. �

Remark 4.1. We would like to remark that the operator L1 need not be elliptic in
the above proof.

Proposition 4.2. Let Mn be a graph of a function u : Rn → R of class C∞(Rn),
with S1 ≥ 0. Let BR be a geodesic ball of radius R in M . Then∫

BθR

S1dM ≤ C(n)

1− θ
Rn,
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where C(n) and θ are constants, with 0 < θ < 1. In particular,

∫
M

S1dM has

polynomial growth.

Proof. Let f : M → R be a function in C∞
0 (M), that is, a smooth function with

compact support. Observe that

div

(
f
∇u

W

)
= fdiv

(
∇u

W

)
+

〈
∇f,

∇u

W

〉
,

where W =
√
1 + |∇u|2. By using the fact that S1 is given by S1 = div

(
∇u

W

)
, we

have that

(21)

∫
M

fS1dM =

∫
M

fdiv

(
∇u

W

)
dM = −

∫
M

〈
∇f,

∇u

W

〉
dM.

Now, choose a family of geodesic balls BR that exhausts M . Fix θ, with 0 < θ <
1, and let f : M → R be a continuous function that is one on BθR, zero outside BR

and linear on BR \BθR. Therefore, from equation (21) we obtain∫
BθR

S1dM ≤
∫
BR

fS1dM ≤
∫
BR

∣∣∣∣
〈
∇u

W
,∇f

〉∣∣∣∣ dM.

By using Cauchy-Schwarz inequality and the fact that
|∇u|
W

≤ 1, we get that

∫
BθR

S1dM ≤
∫
BR

|∇f |dM ≤
∫
Br\BθR

1

(1− θ)R
dM ≤ 1

(1− θ)R
vol(BR).

We observe that since M is a graph, if ΩR = {(x1, . . . , xn+1) ∈ Rn+1|−R ≤ xn+1 ≤
R;

√
x2
1 + · · ·+ x2

n ≤ R}, then

vol(BR) ≤
∫
ΩR

1dx1 . . . dxn+1 = C(n)Rn+1.

Hence, ∫
BθR

S1dM ≤ 1

(1− θ)R
vol(BR) =

C(n)

1− θ
Rn. �

We have the following corollary of Theorem 3.2.

Corollary 4.1. Any entire graph on Rn with nonnegative constant scalar curvature
must have zero scalar curvature.

Proof. Suppose for sake of contradiction that there exists an entire graph with
S2 = const. > 0. Such a graph is strongly stable; and if S2 > 0, we get that
S2
1 = |A|2 + 2S2 > 0, we obtain that S1 does not change sign, and we can choose

the orientation in such a way that S1 > 0. Thus the graph has polynomial growth
of the 1-volume. Thus we have a contradiction with Theorem 3.2. Therefore it
follows that S2 = 0. �
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