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ABSTRACT

We show that a weakly stable complete noncompact hypersurface M " of ]R’H'l, n < 5, with constant mean
curvature is a hyperplane provided certain conditions hold.

Key words: Constant mean curvature, stability, growth of functions.

INTRODUCTION
‘We want to consider the following question. In (Alencar & do Carmo, (1994), Theorem 4) we proved a

result on strongly stable hypersurfaces of R™*1 with constant mean curvature H. The question is wether
the theorem can be extended for the weakly stable case. We recall that M is weakly stable if for all
piecewise smooth functions f: M — R with compact support and mean value zero, i.e., fM fdM = 0, we
have

/M w2 > /M 1A% f2am.

Here |V f|2 is the gradient of f in the induced metric and |A|? is the square of the norm of the linear map
A associated to the second fundamental form.

‘We start with a proposition that will give a test function for weak stability.

PROPOSITION 1. Let M be a complete noncompact Riemannian manifold, and let
g: M —R, g>0,

be a C°° function. Let xg € M and denote by p(z) = d(z,xg), where d is the geodesic distance in M. Then
there exists a function

€€ Co(M),
¢ piecewise linear, with £(z) < 1 if p(z) < R (R a fized number),
€@)=0 if p(z) > 4R,

|
e

|VE&| or bounded, and fM g€ =

H. Alencar and M. do Carmo were partially supported by the National Council for Scientific and
Technological Development — CNPq of Brazil.



164

PROOF. Choose 0 < § < R/4, and a > 0. Define a family &, of functions parametrized by a as
follows:

fala) = 1, 0<z<R-3
R7

€a(z) = 51, R—5<z<R,

€al@) = 0, R<z<2R-3,

_ (2R-¢)a—ax

€a(z) 5 , 2R—6<ax<2R,
&a(z) = —a, 2R < z < 3R,

éa(z):w, 3BR<xz <3R4+,
§a(z) =0, BR+6<z< o0

Then

/gﬁa:/ gEa+/ géa—a/ g+/ 9€a
M B(R) B(2R)—B(2R—6) B(3R)—B(2R) B(3R+6)—B(3R)

The first term is positive and the last three terms are negative. Clearly, if a is small enough,
the integral is positive and if a is large the integral is negative. Thus there exists an a such that
fM g&a = 0. Furthermore, since

0:/9£a,§/ g—a/ g
M B(R) B(3R)—B(2R)

aS/ g// g.
B(R) B(3R)—B(2R)

‘We will need that the a found in the above proof be bounded as R — oco. We will say that the
positive real functions f and h have the samr order if

Rli_{n sup f(R)/h(R) =¢ >0

such an a is bounded by

REMARK 1. The usual definition that f and h have the same order is that, for large R,
0<6 < f(R)/M(R) <A,
for fixed 6 and A (see Hardy, G. H., (1954), p. 2). This definition implies (but it is stronger than)
our definition.
PROPOSITION 2. Notations being as in Proposition 1, let f(R) = fB(R) g. Then the number

a found in the proof of Proposition 1 is bounded as R — oo if there exists a positive function
h(R) which has the same order as f and, in addition, has the property that for every sequence
R;,i=1,---, going to infinity,

1)

PROOF The fact that

h(nR,) _ 1 f
R,;lgloo m =Tnm <1, 2fn<m.
lim sup f(R)/h(R) =c >0
R— oo
implies that for every 6 > 0
(2) f(R) <¢h(R), ¢=c(1+9).
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Furthermore, there exists a sequence @Q; of real numbers going to infinity such that
(3) lim f(Qi)/h(Q:) = c.
Q;—o0
Now, take a sequence {R;} = {Q;/3} and compute

. _ . F(Ri)
i —oe alft) S ne TR Ry

Eh(Rl)
"™ T (3R;) — ch(2Ry)

IA

i

ch(R;)

ch(3R;)
F(3R;) h(2R;)
ch(3R;)  h(3R;)

IN

lim

713 _ 713

C 1 ?
- — 723 _ =
c 1+5 Y23
where we have used (2), (3) and (1). Since we can choose § small enough so that the denominator
is strictly positive, a(R;) is boundBEMARK 2 There are many functions h(R) that satisfy

h(nR;) .
im—-=<1, if m<n.
For instance, for every positive a, R® is such a function and so is e Indeed,
nR)“ n\“
lim!:< ) <1, if n < m,
(mR)> m
enRa
lim ey = lim SRS =0, if n < m.

R
In fact, one easily checks that e® also satisfies the above condition.
On the other hand, log(R) does not satisfy the condition, since

logn
1 R
im ogn = lim log It =1.
R—oo logmR logm +1
log R

As an application of the above ideas, we will show that the question posed in the beginning of
this note has an affirmative answer provided that f(R) = fB(R> |¢|*T9dM grows with the same
order as a positive function h(R) that satisfies
h(mR)
h(nR)
(recall that ¢ = —A + HI). More precisely,

THEOREM. Let M", n < 5, be a complete noncompact hypersurface of R™ ! with constant mean
curvature H. Assume that M is (weakly) stable and that

Sy 1012d0 >
e R e S
In addition, assume that for some q, the function

_ 1+4+q
f(R)—/B(m g+ dn

lim <1l, ifm<n
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satisfies the following: There exists a positive function h(R) such that
lim sup f(R)/h(R) =c¢>0

R— o0

and
h(mR) "

Rgnoo m <1, ifm<n.
Then M™ is a hyperplane.
PROOF. Set in Proposition 1, g = |$|'1? with the ¢ given in the statement of the theorem. Since
o €a|®|*T9 = 0, the integrand can be used as a test function in the (weak) stability. Proceeding
as in loc. cit. we arrive at

[oer ot < gy [ ol ivea
M M

(which is Eq. (17) of loc. cit. where we changed f to &, to conform to our present notation).
By using the definition of &, and setting § = R/4, we obtain

[ e < [ g
B(R—3) - Jemr-8“
< / g2+20|g[2+2a
M
< ﬂa/ 1612V Eq |22
B(4R)
4\ 2+24¢ 8a\ 2+24 )
< m((m) (5 ) Ly
N R R 3(43)‘ !

1
< B st o [ R

Now, let R go to infinity. Since a is bounded and limg_, oo ﬁ Jur |¢|? = 0, we see that || = 0,
and since M is complete noncompact, M is a hyperplane.
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