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In this note, we describe an estimate for the first eigenvalue of the
linearized operator of the rth mean curvature of immersed closed hyper-
surfaces of Rm+1 and Hm+1; we apply this to conclude that the stable
closed hypersurfaces of Rm+1, of constant curvature Hr+1 are the round
spheres.

Reilly’s Theorem: Let Mn be a closed submanifold of Rm+1 and let
H1, λ1 be the mean curvature and first eigenvalue of the Laplacian of M
respectively. R. Reilly proved [R1]:

(1)
λ1
n
≤ 1

Vol(M)

∫
M
H2

1

and equality occurs precisely when M is minimally immersed in a sphere
of Rm+1. Hence when n = m, equality means M is a sphere.

Reilly’s theorem extends easily to immersions in the unit sphere Sm+1

by applying (1) to the immersion M → Sm+1 ⊂ Rm+2:

(2)
λ1
n
−1 ≤ 1

Vol(M)

∫
M
H2

1 .

For immersions of Mm in Hm+1, the situation is more subtle. E.
Heintze obtained some results [H] and the best result was obtained by
A. El Soufi and S. Ilias [S-I]:
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1 , m ≥ 2,

and equality occurs precisely when M is minimally immersed in a geo-

desic sphere of radius arch

√
m

λ1
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We pursue the study of λ1 = λ1(Lr), where Lr is the linearised operator of

Sr+1 =

(
m

r + 1

)
Hr+1 arising from normal variations of an immersed hypersur-

faces Mm in Rm+1. Here Sr is the rth symmetric function of the eigenvalues of the
shape operator A. Details concerning Lr can be found in [R2], [A-C-C], and [Ro].
Briefly, Lr(f) = div(Tr∇f), where Tr is the r’th Newton transformation arising from
A:

T0 = I, Tr = SrI −ATr−1(soL0 = ∆).

Our Theorem: In Rm+1 we are able to generalize Reilly’s result in the best possible
way:

(4) λLr
1

∫
M

Hr ≤ C(r)

∫
M

H2
r+1,

where M is an immersed closed hypersurface in Rm+1 with Hr+1 > 0 and C(r) =

(m− r)
(
m
r

)
. Equality holds precisely when M is a sphere.

We also prove that if M extends to an isometric immersion of Ωm+1 → Rm+1,
∂Ω = M , then

λLr
1 ≤

C(r)

(m+ 1)2
· V (M)

V (Ω)2

∫
M

Hr

and equality holds precisaly when M is a sphere.
Using this we prove such an immersion is r-stable if and only if M is a sphere.

Here stability means M is a critical point of the funcional
∫
M
Hr + bV (M) and the

second derivative of this functional at M is non negative. Here b is a suitable constant
and V (M) is the (algebraic) volume bounded by M . This generalizes the theorems
of Barbosa do Carmo [B-C] (stability of a constant mean curvature immersion means
M is a sphere) and the theorem of Alencar, do Carmo and Colares [A-C-C] (for scalar
curvature).

In Hm+1 we obtain an extrinsic upper bound for λLr
1 but it is not the best possible.

Consequently our result does not yield stability here. The stability problem has been
solved for scalar curvature in Sm+1 [A-C-C] but this is not known in Hm+1.
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The techniques we use are properties of the operator Lr (when it is elliptic, formu-
lae for Lr of particular functions), integral geometry, and inequalities involving the
mean curvatures. Details will appear elsewhere.
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