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Abstract In this paper, we study stability properties of hypersurfaceswith constant weighted
mean curvature (CWMC) in gradient Ricci solitons. The CWMC hypersurfaces generalize
the f -minimal hypersurfaces and appear naturally in the isoperimetric problems in smooth
metric measure spaces. We obtain a result about the relationship between the properness
and extrinsic volume growth under the assumption of a limitation for the weighted mean
curvature of the immersion. Moreover, we estimate Morse index for CWMC hypersurfaces
in terms of the dimension of the space of parallel vector fields restricted to hypersurface.
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1 Introduction

In many problems in geometric analysis, it is natural to consider a Riemannian manifold

(M
n+1

, g) endowed with a measure e− f dμ that has a smooth positive density e− f with
respect to the Riemannian measure dμ induced by the metric g. A smooth metric measure
space is a triple

M
n+1
f = (M

n+1
, g, e− f dμ).
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The smooth function f : M → R is called the potential function.
The smooth metric measure spaces arose in the study of diffusion processes on manifolds

in the works of Bakry and Émery [1]. A natural extension of the Ricci tensor in this new
context is the Bakry-Émery Ricci tensor given by

Ric f = Ric + ∇2
f,

where ∇2
f is the Hessian of the potential function f on M

n+1
. It is known that a complete

smooth metric measure space M
n+1
f satisfying Ric f ≥ kg, for some constant k > 0, is not

necessarily compact. In fact, the shrinking Gaussian soliton
(
R
n+1, gcan, e

− |x |2
4 dx

)

is noncompact complete and Ric f = 1

2
gcan, where gcan is canonical metric. The shrinking

cylinder soliton
(
S
k√
2(k−1)

× R
n+1−k, g, e− |x |2

4 dθdx

)

with product metric g, potential function f (θ, x) = |x |2
4 , θ ∈ S

k√
2(k−1)

, x ∈ R
n+1−k , is

another example of a noncompact complete smooth metric measure space with Ric f = 1

2
g.

The gradient Ricci solitons are natural generalizations of the Einstein metrics and were

introduced by Hamilton in [13]. Indeed, a complete smooth metric measure space M
n+1
f is

a gradient Ricci soliton if there exists a real constant k such that

Ric f = kg.

If k > 0, the gradient Ricci soliton is called shrinking soliton. When the potential function
is a constant, the gradient Ricci solitons are simply Einstein metrics. It is still important to
mention that gradient Ricci solitons play an important role in Hamilton’s Ricci flow and they
correspond to self-similar solutions and often arise as type I singularity models, see [12].

Let x : Mn → M
n+1
f be an isometric immersion of a Riemannian orientable manifold Mn

into smooth metric measure space M
n+1
f . The function f : M → R, restricted to M , induces

a weighted measure e− f dσ on M . Thus we have an induced smooth metric measure space
Mn

f = (M, g, e− f dσ).
The second fundamental form A of x is defined by

A(X, Y ) = (∇XY )⊥, X, Y ∈ TpM, p ∈ M,

where ⊥ symbolizes the projection above the normal bundle of M . The weighted mean
curvature vector of M is defined by

H f = H + (∇ f )⊥,

and the weighted mean curvature H f is such that H f = −H f η, where H = trA and η is
unit outside normal vector field. The hypersurface M is called f -minimal when its weighted
mean curvature vector H f vanishes identically; when there exists real constant C such that
H f = C , we say that the hypersurface M has constant weighted mean curvature (CWMC).
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The weighted volume of a measurable set Ω ⊂ M is given by

Vol f (Ω) =
∫

Ω

e− f dσ. (1)

Let BM
r be the geodesic ball of M with center in a fixed point o ∈ M and radius r > 0. It is

said that the weighted volume of M has polynomial growth if there exists positive numbers
α and C such that

Vol f (B
M
r ∩ M) ≤ Crα (2)

for any r ≥ 1. When α = n in (2), M is said to have Euclidean volume growth.
We can consider either f -minimal or CWMC hypersurfaces in gradient Ricci solitons.

We would like to point out that a self-shrinker to the mean curvature flow is a f -minimal

hypersurface of the shrinking Gaussian soliton

(
R
n+1, gcan, e− |x |2

4 dx

)
. In [7], Cheng and

Zhou proved that for f -minimal hypersurfaces in the shrinking Gaussian soliton R
n+1, the

conditions of proper immersion, Euclidean volume growth, polynomial volume growth, and
finite weighted volume are equivalent to each other. Those equivalences are still being valid
for f -minimal hypersurfaces immersed in a complete shrinking gradient Ricci soliton M f

satisfying Ric f = 1
2 g, where g is Riemannian metric and f is a convex function (see [6],

Corollary 1). In this direction, the following result was obtained:

Theorem 1 Let Mn be a complete hypersurface isometrically immersed in a complete
smooth metric measure space M

m
f .

(i) If |H f | < ∞ and Vol f (M) < ∞, then Mn is proper.
(ii) If Ric f = 1

2 g, f ∈ C∞(M) is convex function,

sup
x∈M

〈H f ,∇ f 〉 < ∞,

and Mn is proper, then Vol f (M) < ∞ and Mn has polynomial volume growth.

Let L2(e− f dσ) be the space of square integrable functions on M with respect to the
measure e− f dσ and with the norm

|u|L2
f

=
(∫

M
u2e− f dσ

) 1
2

.

It is known that the weighted Laplacian operator Δ f , defined by

Δ f u := Δu − 〈∇ f,∇u〉,
is associated with e− f dσ as well as Δ is associated with dσ. Moreover, Δ f is a self-adjoint
operator on L2(e− f dσ), and therefore, the L2(e− f dσ) spectrum of Δ f on M , denoted by
σ(−Δ f ), is a subset of [0,+∞).

Next, let F : (−ε, ε) × M → M f , Ff (p) = F(t, p) for all t ∈ (−ε, ε) and p ∈ M be a
variation of the immersion x associated with the normal vector field uη, where u ∈ C∞

c (M).

The corresponding variation of theweighted area functionalA f (t) = Vol f (Ft (M)) satisfies

A ′
f (0) =

∫
M
H f ue

− f dσ, (3)

where H f is such that H f = −H f η. The expression (3) is known as first variation formula.
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The f -minimal hypersurfaces are critical points of the weighted area functional. Yet,
the CWMC hypersurfaces can be viewed as critical points of the weighted area functional
restricted to variations which preserve the enclosed weighted volume, i.e., for functions
u ∈ C∞

c (M) which satisfy the additional condition∫
M
ue− f dσ = 0.

For such critical points, the second variation of the weighted area functional is given by

A ′′
f (0) = −

∫
M

(
uΔ f u + (|A|2 + Ric f (η, η)

)
u2

)
dσ,

where Ric f is the Bakry-Émery Ricci curvature and A is the second fundamental form. For
more details, see [1], [6] and [17].

Remark 1 When f is a constant function, the first and second variation formula were given
by Barbosa and do Carmo [2] and Barbosa, do Carmo, and Eschenburg [3].

The operator

L f = Δ f + |A|2 + Ric f (η, η)

is called the f -stability operator of the immersion x . In the f -minimal case, the f -stability
operator is viewed as acting on F = C∞

c (M); in the case of the CWMC hypersurfaces, the
f -stability operator is viewed as acting on

F =
{
u ∈ C∞

c (M);
∫
M
ue− f dσ = 0

}
.

Associated with L f is the quadratic form

I f (u, u) = −
∫
M
uL f ue

− f dσ.

For each compact domain Ω ⊂ M , define the index, Ind f (Ω), of L f in Ω as the maximal
dimension of a subspace of F where I f is a negative definite. The index, Ind f (M), of L f

in M (or simply, the L f -index of M) is then defined by

Ind f (M) = sup
Ω⊂M

Ind f Ω,

where the supreme is taken over all compact domains Ω ⊂ M. We highlight that Ind f (M)

is the Morse index of the operator L f in f -minimal hypersurfaces. For more details, see [8]
and [11].

Let M ⊂ R
n+1 be a proper, non-planar, two-sided hypersurface satisfying

Vol f (M) < ∞, H = 1

2
〈x, η〉 + C and Ind f (M) ≤ n,

where H is themean curvature, x is the position vector ofRn+1,η is the unit normal field of the
hypersurface, Ind f (M) is the L f -index andC is a real constant. McGonagle and Ross ( [15],
Theorem 5.6) showed that there exists a natural number i such that n+1− Ind f (M) ≤ i ≤ n
and M = M0 × R

i . In addition, they obtained Ind f (M) ≥ 2.
It is important to mention that the properness hypothesis can be removed of Theorem 5.6

of [15]. In fact, by Theorem 1, part (i), the finite weighted volume implies in the properness
of its immersion.
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Next, we obtain an estimate for L f -index of a CWMC hypersurface with finite weighted
volume and isometrically immersed in a gradient Ricci soliton that admits at least one parallel
field globally defined.

Theorem 2 Let Mn be a CWMC hypersurface isometrically immersed in a shrinking gra-

dient Ricci soliton M
n+1
f with Vol f (M) < ∞. Denote by PM f

the set of parallel fields

globally defined on M
n+1
f and η the unit normal field to Mn.

(i) If the unit function 1 /∈ {〈X, η〉 : X ∈ PM f
},

Ind f (M) ≥ dimPM f
− dim{X ∈ PM f

: 〈X, η〉 ≡ 0}. (4)

(ii) If the unit function 1 ∈ {〈X, η〉 : X ∈ PM f
}, Mn is totally geodesic.

As a consequence of Theorem 2, we have

Corollary 1 Let Mn be aCWMChypersurfacewith finite weighted volume and isometrically

immersed in a shrinking gradient Ricci soliton M
n+1
f . If the unit function 1 /∈ {〈X, η〉 :

X ∈ PM f
} and there exists a parallel field X0 such that 〈X0, η〉 �≡ 0, then

Ind f (M) ≥ 1.

Moreover,

dim{X ∈ PM f
: 〈X, η〉 ≡ 0} = dimPM f

− 1

whenever Ind f (M) = 1.

A necessary condition for equality to be achieved in the estimate (4) of Theorem 2 is given
by

Theorem 3 Let Mn be a CWMC hypersurface isometrically immersed in a shrinking gra-

dient Ricci soliton M
n+1
f that satisfies Ric f = kg. Denote by PM f

the set of parallel fields

globally defined on M
n+1
f and η the unit normal field to M. Suppose that Vol f (M) < ∞,

Ind f (M) < ∞, dimPM f
> 0, and

Ind f (M) = dimPM f
− dim{X ∈ PM f

: 〈X, η〉 ≡ 0}.
(i) If Ind f (M) = dimPM f

, M is totally geodesic and the bottomμ1(M) of the L2(e− f dσ)

spectrum of the f -stability operator satisfies μ1(M) = −k.
(ii) If Ind f (M) �= dimPM f

, either Mn is diffeomorphic to the product of a Euclidean
space with some other manifold or there is a circle action on M whose orbits are not
real homologous to zero.

It is important to highlight that for f -minimal, stability properties were studied byColding
and Minicozzi [10] and Hussey [14]. In fact, in [14], Hussey founded the spectrum and
the eigenfunctions of the f -stability operator on the f -minimal hypersurfaces of the form
S
k ×R

n−k isometrically immersed in shrinking Gaussian soliton Rn+1. He also used [10] to
prove that, for any complete embedded non-planar f -minimal hypersurface with polynomial
volume growth, the L f -index is at least n+2.When the ambient space is a shrinking cylinder
soliton S

n√
2(n−1)

× R, it was proved by Cheng et al. [5], and Cheng and Zhou [8] that the
complete oriented proper f -minimal hypersurfaces have L f -index at least one. They still
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classified those with L f -index one. Moreover, in [18], Vieira and Zhou founded a domain
in the shrinking cylinder soliton S

k√
2(k−1)

× R
n+1−k that cannot contain proper f -minimal

hypersurfaces.
The ambient spacesRn+1, Sn√

2(n−1)
×R and Sk√

2(k−1)
×R

n+1−k are examples of gradient
Ricci solitons that admit parallel field globally defined.

2 Properness and finite weighted volume of CWMC hypersurfaces

We will begin by proving Theorem 1 which gives a relationship between the properness and
extrinsic volume growth. For this, we highlight the following:

Remark 2 Let M f be a complete gradient Ricci soliton satisfying Ric f = 1
2 g.Cao and Zhou

[4] showed that, by translating f ,

R + |∇ f |2 − f = 0, R + Δ f = m

2
, and R ≥ 0. (5)

Thus it follows from the expressions in (5) that

|∇ f |2 ≤ f.

In addition, there exists constants c1, c2 ∈ R such that

1

4
(r(x) − c1)

2 ≤ f (x) ≤ 1

4
(r(x) + c2)

2, (6)

where r(x) = dist M (x, o) is the distance from x ∈ M to a fixed point o ∈ M . The constant
c2 depends only on the dimension of the manifold and c1 depends on the geometry of g on
unit ball center in o (see [4], Theorem 1.1). In [16], Munteanu and Wang showed that the
inequalities in (6) are true only assuming that Ric f ≥ 1

2 g and |∇ f |2 ≤ f.

Proof of Theorem 1 Part (i): We suppose that M is not proper. Thus there exists a positive

real number R such that B
M
R (o) ∩ M is not compact in M , where B

M
R (o) denotes the closure

of BM
R (o). Then, for any a > 0 sufficiently small with a < 2R, there exists a sequence {pk}

of the points in BM
R (o) ∩ M with dist M (pk, p j ) ≥ a > 0 for any different k and j . Since

BM
a/2(pk) ∩ BM

a/2(p j ) = ∅ for any k �= j , we obtain BM
a/2(p j ) ⊂ BM

2R(o), where BM
a/2(pk)

and BM
a/2(p j ) denote the intrinsic balls of M of radius a/2, center in pk and p j , respectively.

Let {e1, e2, . . . , en} be an orthonormal basis of TxM . If x ∈ BM
a/2(p j ), then the function

extrinsic distance to p j , denoted by r j (x) = dist M (x, p j ), satisfies

n∑
i=1

∇2
r j (ei , ei ) =

n∑
i=1

〈∇ei ∇r j , ei 〉 =
n∑

i=1

(
〈∇ei ∇r j , ei 〉 + 〈∇ei (∇r j )

⊥, ei 〉
)

=
n∑

i=1

〈∇ei ∇r j , ei 〉 −
n∑

i=1

〈A(ei , ei ),∇r j 〉

= Δr j − 〈H,∇r j 〉.
Observe that M has bounded locally geometry, i.e., there exists positive real numbers k and
i0 so that the sectional curvature of M is bounded above by k and the injectivity radius of
M is bounded below by i0 in a neighborhood of a point o ∈ M . Choosing R > 0 such
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that 2R < min{i0, 1/
√
k}, it follows from Hessian comparison theorem (see, for example,

Lemma 7.1 in [9]), that

∇2
r j (ei , ei ) ≥ −√

k + 1

r j

∣∣ei − 〈ei ,∇r j 〉∇r j
∣∣2

in B
M
2R(o). Hence, in B

M
2R(o) ∩ M ,

Δr j =
n∑

i=1

∇2
r j (ei , ei ) + 〈H,∇r j 〉

≥
n∑

i=1

(
−√

k + 1

r j

∣∣ei − 〈ei ,∇r j 〉∇r j
∣∣2)

+〈H,∇r j 〉 + 〈(∇ f )⊥,∇r j 〉 − 〈(∇ f )⊥,∇r j 〉
= −n

√
k + n

r j
− |∇r j |2

r j
+ 〈H f ,∇r j 〉 − 〈(∇ f )⊥,∇r j 〉

≥ −n
√
k + n

r j
− |∇r j |2

r j
− |H f | − |∇ f |.

By hypothesis, the norm of H f is bounded above. Thus

Δr j ≥ −n
√
k + n

r j
− |∇r j |2

r j
− sup

p∈BM
2R(o)∩M

|H f (p)| − sup
p∈BM

2R(o)∩M

|∇ f (p)|

≥ n

r j
− |∇r j |2

r j
− C,

where

C = n
√
k + sup

p∈BM
2R(o)∩M

|H f (p)| + sup
p∈BM

2R(o)

|∇ f (p)|.

Therefore, in BM
2R(o) ∩ M ,

Δr2j = 2r jΔr j + 2|∇r j |2 ≥ 2r j

(
n

r j
− |∇r j |2

r j
− C

)
+ 2|∇r j |2 = 2n − 2Cr j .

Choosing a < min{2n/C, 2R}, we have for 0 < ζ ≤ a/2,∫
BM

ζ (p j )

(2n − 2Cr j ) dσ ≤
∫
BM

ζ (p j )

Δr2j dσ =
∫

∂BM
ζ (p j )

〈∇r2j , ν〉 dA

≤
∫

∂BM
ζ (p j )

2r j |∇r j ||ν|dA ≤
∫

∂BM
ζ (p j )

2r j dA

≤ 2ζ A j (ζ ), (7)

where ν denotes the unit normal vector field pointing out of ∂BM
ζ (p j ) and A j (ζ ) denotes

the area of ∂BM
ζ (p j ). Using co-area formula, we have

∫
BM

ζ (p j )

(n − Cr j ) dσ =
∫ ζ

0

∫
∂BM

t (p j )

(n − Cr j )dAt dt
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≥ (n − Cζ )
0 ∂BM

t (p j )

dAt dt

= (n − Cζ )Vj (ζ ),

where Vj (ζ ) denotes the volume of BM
ζ (p j ). Therefore, it follows from (7) and previous

inequality that

(n − Cζ )Vj (ζ ) ≤ ζ A j (ζ ). (8)

Since

V ′
j (ζ ) = d

dζ

∫
BM

ζ (p j )

dσ = d

dζ

∫ ζ

0

∫
∂BM

t (p j )

dAt dt =
∫

∂BM
ζ (p j )

dA = A j (ζ ),

then

(n − Cζ )Vj (ζ ) ≤ ζV ′
j (ζ ).

Thus

d

dζ
log(Vj (ζ )) = V ′

j (ζ )

Vj (ζ )
≥ n

ζ
− C. (9)

Integrating (9) from ε > 0 to ζ , we obtain

log(Vj (ζ )) − log(Vj (ε)) ≥ n log ζ − n log ε − C(ζ − ε),

that is,

Vj (ζ )

Vj (ε)
≥ ζ n

εn
e−C(ζ−ε).

Now, observing that

lim
ε→0+

Vj (ε)

εn
= ωn,

we obtain

Vj (ζ ) ≥ ωnζ
ne−Cζ

for 0 < ζ ≤ a/2. Thus we conclude that

Vol f (M) =
∫
M
e− f dσ ≥

∞∑
j=1

∫
BM
a/2(p j )

e− f dσ

≥
⎛
⎝ inf

B
M
2R(o)

e− f

⎞
⎠ ∞∑

j=1

Vj (a/2) = ∞.

This contradicts the assumption of the finite weighted volume ofM . ThereforeMn is a proper
hypersurface of M

m
f .

Part (ii): By hypothesis, Ric f = 1
2 g. It follows from Remark 2 that

Δ f − |∇ f |2 + f = m

2
and |∇ f |2 ≤ f.



569

Since f is a convex function, i.e., ∇2
f ≥ 0, we have

Δ f f + f = Δ f − |∇ f |2 + f = ∇2
f (ei , ei ) + 〈H,∇ f ⊥〉 − |∇ f |2 + f

= Δ f −
m∑

i=n+1

∇2
f (ηi , ηi ) + 〈H f ,∇ f ⊥〉 − |∇ f ⊥|2 − |∇ f |2 + f

= Δ f −
m∑

i=n+1

∇2
f (ηi , ηi ) + 〈H f ,∇ f ⊥〉 − |∇ f |2 + f

≤ m

2
+ C,

with C = supx∈M 〈H f ,∇ f ⊥〉 < ∞. Observe that

1

4
(r(x) − c)2 ≤ f (x) ≤ 1

4
(r(x) + c)2, (10)

where c is a constant (see Remark 2, inequalities in (6)). Hence we can conclude that f is
proper on M . Since, by hypothesis, x : M → M f is a proper immersion, then f |M : M → R

is a proper function. Therefore, it follows from Theorem 1.1 of [7] that M has finite weighted
volume and polynomial volume growth of the sub-level set of the potential function f . ��

3 The L f -index of CWMC hypersurfaces

In this section, we will prove Theorem 2, Corollary 1, and Theorem 3, which are results about
the L f -index of CWMChypersurfaces isometrically immersed in gradient Ricci solitons that
admit at least one parallel field globally defined. For this, we are going to give some definitions
and state known results.

Proposition 1 Let M
n+1
f be a gradient Ricci soliton satisfying Ric f = kg and X a parallel

vector field on M
n+1
f . If Mn is a CWMC hypersurface isometrically immersed in M

n+1
f , then

L f 〈X, η〉 = k〈X, η〉
and

Δ f 〈X, η〉2 = −2|A|2〈X, η〉2 + 2|AX�|2,
where η is the unit normal vector field to M.

Proof Let {e1, e2, . . . , en} be a geodesic orthonormal frame on M . By hypothesis, H f = C ,
this is, H = 〈∇ f, η〉 + C, where C is a real constant. Thus

∇H =
n∑

i=1

ei (H)ei =
n∑

i=1

ei (〈∇ f, η〉)ei =
n∑

i=1

〈∇ei ∇ f, η〉ei +
n∑

i=1

〈∇ f,∇ei η〉ei

=
n∑

i=1

〈∇ei ∇ f, η〉ei −
n∑

i=1

〈A(ei , e j ), η〉〈∇ f, e j 〉ei . (11)

For u = 〈X, η〉 and ai j = 〈Aei , e j 〉, we have

∇u =
n∑
j=1

e j (u)e j =
n∑
j=1

〈∇e j η, X〉e j = −
n∑

i, j=1

a ji 〈ei , X〉e j . (12)
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It follows from (11) and (12),

〈∇H, X〉 =
n∑

i=1

〈∇ei ∇ f, η〉〈ei , X〉 −
n∑

i, j=1

ai j 〈∇ f, e j 〉〈ei , X〉

= 〈∇X�∇ f, η〉 + 〈∇ f,∇u〉. (13)

Moreover,

ei (u) = 〈∇ei η, X〉 = −
n∑
j=1

ai j 〈e j , X〉.

Deriving the previous expression and observing that ∇ek e j = 0, we obtain

ek(ei (u)) = −
n∑
j=1

(
ai j,k〈e j , X〉 + ai j 〈X,∇ek e j 〉

)

= −
n∑
j=1

ai j,k〈e j , X〉 −
n∑
j=1

ai j ak j 〈X, η〉. (14)

It follows from Codazzi equation that

R(e j , ek)e
⊥
i = (

aki, j − a ji,k
)
η,

that is,

〈R(e j , ek)ei , η〉 = aki, j − a ji,k . (15)

Replacing (15) in (14), we get

ek(ei (u)) = −
n∑
j=1

aki, j 〈e j , X〉 +
n∑
j=1

〈R(e j , ek)ei , η〉〈e j , X〉 −
n∑
j=1

ai j ak j 〈X, η〉

and using (13),

Δu =
n∑

i=1

ei (ei (u))= −
n∑

i, j=1

aii, j 〈e j , X〉+
n∑

i, j=1

〈R(e j , ei )ei , η〉〈e j , X〉−
n∑

i, j=1

ai j ai j 〈X, η〉

= 〈∇H, X〉 +
n∑

i=1

〈R(X�, ei )ei , η〉 − |A|2〈X, η〉

= 〈∇X�∇ f, η〉 + 〈∇ f,∇u〉 + Ric(X�, η) − |A|2u. (16)

On the other hand,

0 = k〈X�, η〉 = Ric f (X
�, η) = Ric(X�, η) + ∇2

f (X�, η)

= Ric(X�, η) + 〈∇X�∇ f, η〉. (17)

Therefore, it follows from (16) and (17),

Δ f u = Δu − 〈∇ f,∇u〉
= 〈∇X�∇ f, η〉 + 〈∇ f,∇u〉 − 〈∇X�∇ f, η〉 − |A|2u − 〈∇ f,∇u〉
= −|A|2u, (18)
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implying that

L f u = Δ f u + |A|2u + ku = ku.

Moreover, using the equality (18), we have that

Δ f u
2 = 2uΔ f u + 2|∇u|2 = −2|A|2u2 + 2|AX�|2.

��
Remark 3 In ( [5], Proposition 2), Cheng et al. obtained expressions for Δ f 〈X, η〉 and
L f 〈X, η〉 of a f-minimal hypersurface isometrically immersed in a smooth metric mea-
sure space. However, the demonstration of Proposition 2 [5] obtained by them extends to
CWMC hypersurfaces. We did the above demonstration of Proposition 1 only to the sake of
completeness of the results.

The vector subspace of C∞(M) generated by E ⊂ C∞(M), denoted by Span E, is the
set of all the linear combinations of the elements of E .

LetPM be the set of all tangent vector fields to M which are parallel and globally defined.

Lemma 1 Let M
n+1
f be a shrinking gradient Ricci soliton satisfying Ric f = kg and Mn be

a CWMC hypersurface isometrically immersed in M
n+1
f . If M is compact, then I f is negative

defined in the

Span
{
1, 〈X, η〉 : X ∈ PM f

}
.

Moreover, ∫
M

|A|2〈X, η〉e− f dσ = 0.

Proof It follows from Proposition 1 that the function u = 〈X, η〉, with X ∈ PM f
, satisfies

L f u = ku. Since M is compact,∫
M
kue− f dσ =

∫
M
L f ue

− f dσ =
∫
M

(
Δ f u + |A|2u + ku

)
e− f dσ

=
∫
M

|A|2ue− f dσ +
∫
M
kue− f dσ.

Thus ∫
M

|A|2ue− f dσ = 0. (19)

Observe that

I f (1, 1) = −
∫
M
1L f 1e

− f dσ = −
∫
M

(|A|2 + k
)
e− f dσ

and

I f (u, u) = −
∫
M
uL f ue

− f dσ = −k
∫
M
u2e− f dσ.

Therefore

I f (c0 + u, c0 + u) = I f (c0, c0) + I f (u, u) + 2I f (c0, u)



572

= −
∫
M

[
c20|A|2 + kc20 + ku2 + 2c0

(
Δ f u + |A|2u + ku

)]
e− f dσ

= −
∫
M

[
c20|A|2 + kc20 + ku2 + 2c0ku

]
e− f dσ

= −c20

∫
M

|A|2e− f dσ − k
∫
M

(c0 + u)2e− f dσ < 0,

where u = 〈X, η〉. This shows that I f is negative defined in
Span

{
1, 〈X, η〉 : X ∈ PM f

}
.

��
Remark 4 Supposing that Mn has finite weighted volume and putting

α = −

∫
M

〈X, η〉e− f dσ

Vol f (M)
,

we can conclude that ∫
M

(α + 〈X, η〉)e− f dσ = 0.

Then

F ∩ Span
{
1, 〈X, η〉 : X ∈ PM f

}
�= ∅.

Now we turn to noncompact manifolds. For this, we will consider the functions that have
compact support in M .

Proposition 2 Let M
n+1
f be a smooth metric measure space and Mn be a noncompact

hypersurface isometrically immersed in M
n+1
f . Then

I f (φu, φu) = −
∫
M

φ2uL f ue
− f dσ +

∫
M

|∇φ|2u2e− f dσ,

where φ ∈ C∞
c (M), u ∈ C∞(M), and η denotes the unit normal field on M. Moreover, if

Ric f = kg and M is a CWMC hypersurface, then∫
M

φ2|A|2〈X, η〉e− f dσ = −2
∫
M

φ〈∇φ, AX�〉e− f dσ, (20)

where X is a parallel vector field on M
n+1
f .

Proof Note that

I f (φu, φu) = −
∫
M

(φu)L f (φu)e− f dσ

= −
∫
M

[
(φu)Δ f (φu) + (|A|2 + Ric f (η, η)

)
φ2u2

]
e− f dσ

= −
∫
M

[
φ2uΔ f u + φu2Δ f φ + 2φu〈∇φ,∇u〉] e− f dσ

−
∫
M

(|A|2 + Ric f (η, η)
)
φ2u2e− f dσ.
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Since φ has compact support, then

0 =
∫
M
div(φu2e− f ∇φ)dσ =

∫
M

(
φu2Δ f φ + 2uφ〈∇u,∇φ〉 + u2|∇φ|2) e− f dσ.

Using the last two expressions, we obtain

I f (φu, φu) = −
∫
M

[
φ2uΔ f u − |∇φ|2u2 + (|A|2 + Ric f (η, η)

)
φ2u2

]
e− f dσ

= −
∫
M

φ2uL f ue
− f dσ +

∫
M

|∇φ|2u2e− f dσ.

Moreover, supposing Ric f = kg, H f is constant, and X is a parallel field on M f , we get∫
M

φ2k〈X, η〉e− f dσ =
∫
M

φ2L f 〈X, η〉e− f dσ

= −
∫
M

〈∇φ2,∇〈X, η〉〉e− f dσ +
∫
M

(|A|2 + k
)
φ2〈X, η〉e− f dσ.

Therefore∫
M

|A|2φ2〈X, η〉e− f dσ =
∫
M

〈∇φ2,∇〈X, η〉〉e− f dσ = −2
∫
M

φ〈∇φ, AX�〉e− f dσ.

��
Lemma 2 Let M

n+1
f be a shrinking gradient Ricci soliton satisfyingRic f = kg and Mn be a

CWMC hypersurface isometrically immersed in M
n+1
f . If M is noncompact andVol f (M) <

∞, then there exists φ ∈ C∞
c (M) such that I f is negative defined in φV and dim(φV ) =

dim V , where

V = Span
{
1, 〈X, η〉 : X ∈ PM f

}
.

Moreover, assuming that
∫
M |A|2e− f dσ < ∞, we have

∫
M

|A|2〈X, η〉e− f dσ = 0.

Proof Let u = c0 + 〈X, η〉, where c0 is a real constant and X is a parallel field on M
n+1
f .

Since H f is constant, then by Proposition 1, we have

L f u = L f 〈X, η〉 + (|A|2 + k
)
c0 = k〈X, η〉 + (|A|2 + k

)
c0. (21)

It follows from Proposition 2 and equality (21) that

I f (φu, φu) = −
∫
M

φ2uL f ue
− f dσ +

∫
M

|∇φ|2u2e− f dσ

= −
∫
M

φ2u
(
k〈X, η〉 + (|A|2 + k

)
c0

)
e− f dσ +

∫
M

|∇φ|2u2e− f dσ

= −k
∫
M

φ2u2e− f dσ −
∫
M

φ2|A|2c20e− f dσ −
∫
M

φ2|A|2c0〈X, η〉e− f dσ

+
∫
M

|∇φ|2u2e− f dσ.
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Now, using once more Proposition 2 and Cauchy–Schwarz’s inequality,∣∣∣∣
∫
M

φ2|A|2c0〈X, η〉e− f dσ

∣∣∣∣ = 2

∣∣∣∣
∫
M

φ〈∇φ, AX�〉c0 e− f dσ

∣∣∣∣
≤ 2

∫
M

|φ| |∇φ| |A| |X�| |c0| e− f dσ

≤
∫
M

φ2|A|2c20 e− f dσ +
∫
M

|∇φ|2|X�|2e− f dσ.

Therefore

I f (φu, φu) ≤ −k
∫
M

φ2u2e− f dσ +
∫
M

|∇φ|2(u2 + |X�|2)e− f dσ. (22)

Let r(x) be the extrinsic distance from x ∈ M to a fixed point o ∈ M f . For R > 0 sufficiently
large, define the function φR : M → R such that

φR(x) =
⎧⎨
⎩
1, r(x) ≤ R,
2R−r(x)

R , R ≤ r(x) ≤ 2R,

0, r(x) ≥ 2R.

(23)

Observe that φR ∈ C∞
c (M) becauseM is proper (see Theorem 1, part (i)), and |∇φR | ≤ 1/R.

Now, substituting φ = φR in the inequality (22), we obtain

I f (φRu, φRu) ≤ −k
∫
M

φ2
Ru

2e− f dσ + |X |2 + c20 + 2|c0| |X |
R2

∫
M∩(B2R\BR)

e− f dσ,

(recall that X is parallel and therefore |X | is constant). Since Vol f (M) < ∞ and |X | is
constant, for each u ∈ V there exists Ru sufficiently large such that

I f (φRu u, φRu u) < 0.

Let us find a function φ ∈ C∞
c (M) that is not dependent of the function u and

I f (φu, φu) < 0. In fact, we consider the subset

S =
{
u ∈ V :

∫
M
u2e− f dσ = 1

}
.

Note that V ⊂ L2(e− f dσ) is a subspace of finite dimension smaller than or equal to
dimPM f

+1. Thus S is a compact set in L2(e− f dσ) and there exists a positive real number

R0 such that any function u ∈ S does not vanishes on M ∩ B
M f
R0

(o). Otherwise, we could get
a sequence R j → ∞ of positive numbers so that for each j there exists u j ∈ S with u j ≡ 0

on M ∩ B
M f
R j

(o). Hence we would have

u = lim
j→∞ u j ∈ S

and u ≡ 0 on M. However, this is not possible because if u ∈ S, then∫
M
u2e− f dσ = 1.

For R sufficiently large and R ≥ R0, and for any function u ∈ S, we have

I f (φRu, φRu) ≤ −k
∫
M

φ2
Ru

2e− f dσ + |X |2 + c20 + 2|c0||X |
R2

∫
M∩(B2R\BR)

e− f dσ < 0.
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In fact,

M(R) =
∫
M

φ2
Ru

2e− f dσ > 0

is an increasing function on R and

lim
R→∞

|X |2 + c20 + 2|c0||X |
R2

∫
M∩(B2R\BR)

e− f dσ = 0,

since Vol f (M) < ∞. Here, φ = φR independent of u ∈ S. Therefore, if u ∈ V , 1
|u|

L2f

u ∈ S,

and thus, for u �≡ 0,

I f (φu, φu) = |u|2
L2

f
I f

(
φ

u

|u|L2
f

, φ
u

|u|L2
f

)
< 0.

Wewill show that dim V = dim(φV ). In fact, let {u1, u2, . . . , us} be an orthonormal basis
to the vector subspace V ⊂ L2(e− f dσ). For the function φ built here, we have that ui �≡ 0 on

M∩B
M f
R0

(o).Therefore {φu1, φu2, . . . , φus} is linearly independent and dim(φV ) = dim V .

Finally, it follows fromProposition 2, equality (20) with φ = √
φ j , and Cauchy Schwarz’s

inequality that∣∣∣∣
∫
M

φ j |A|2〈X, η〉e− f dσ

∣∣∣∣ =
∣∣∣∣−

∫
M

〈∇φ j , AX
�〉e− f dσ

∣∣∣∣
≤

(∫
M

|∇φ j |2e− f dσ

) 1
2
(∫

M
|AX�|2e− f dσ

) 1
2

.

Now, putting R = j in the function defined in (23) and reviewing that |X | is constant, we
get

∣∣∣∣
∫
M

φ j |A|2〈X, η〉e− f dσ

∣∣∣∣ ≤ |X |
j

(∫
M∩(B2 j \Bj )

e− f dσ

) 1
2 (∫

M
|A|2e− f dσ

) 1
2

. (24)

By hypothesis,M has finite weighted volume and
∫
M |A|2e− f dσ < ∞, hence the right-hand

side of (24) tends to zero as j → ∞, and we can conclude that

lim
j→∞

∫
M

φ j |A|2〈X, η〉e− f dσ = 0. (25)

Note that

lim
j→∞(φ j |A|2〈X, η〉)(x) = (|A|2〈X, η〉)(x) for each x ∈ M,

|φ j |A|2〈X, η〉| ≤ |A|2|〈X, η〉|,
and

0 ≤
∫
M

|A|2|〈X, η〉|e− f dσ ≤ |X |2
∫
M

|A|2e− f dσ < ∞.

Therefore, using the dominated convergence theorem and expression (25), we get∫
M

|A|2〈X, η〉e− f dσ = 0.

��
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Proof of Theorem 2 Part (i): Observe that if 1 /∈ {〈X, η〉 : X ∈ PM f
},

dim V = 1 + dim
{
〈X, η〉 : X ∈ PM f

}
,

where V = Span {1, 〈X, η〉 : X ∈ PM f
}. By Lemmas 1 and 2, there exists a function

φ ∈ C∞
c (M) such that dim φV = dim V and I f is negative defined in φV . Recall that the

Ind f (M) is the maximal dimension of a subspace ofF which I f is negative defined, where
F = C∞

c (M) if M is a f -minimal and

F =
{
u ∈ C∞

c (M);
∫
M
ue− f dσ = 0

}

if M is a CWMC hypersurface.
Now observe that

dim{〈X, η〉 : X ∈ PM f
} ≤ dim(F ∩ φV ).

In fact, |X | is constant because X is a parallel field. Since the weighted volume of M is
finite, then

∫
M φ〈X, η〉e− f dσ ≤ |X | ∫M φe− f dσ < ∞. Thus there exists a real number c0

satisfying ∫
M

φ(c0 + 〈X, η〉)e− f dσ = 0,

and hence φ(c0 + 〈X, η〉) ∈ F ∩ φV . Therefore

dim{〈X, η〉 : X ∈ PM f
} ≤ dim(F ∩ φV ) ≤ Ind f (M).

Consider the linear transformation T : PM f
→ C∞(M) defined by T (X) = 〈X, η〉.

Now, applying the kernel and image theorem, it turns

dimPM f
= dim

{
X ∈ PM f

: T (X) ≡ 0} + dim{T (X) : X ∈ PM f

}
≤ dim{X ∈ PM f

: 〈X, η〉 ≡ 0} + Ind f (M). (26)

Part (ii): Otherwise, if 1 ∈ {〈X, η〉 : X ∈ PM f
}, L f 1 = k by Proposition 1, and L f 1 =

|A|2 + k. Thus |A|2 ≡ 0, i.e., M is totally geodesic. ��
Proof of Corollary 1 Note that

dim{X ∈ PM f
: 〈X, η〉 ≡ 0} ≤ dimPM f

− 1 (27)

as long as we assume that there exists a field X0 ∈ PM f
such that 〈X0, η〉 �≡ 0. It follows

from Theorem 2 and from the inequality (27) that

dimPM f
− Ind f M ≤ dim{X ∈ PM f

: 〈X, η〉 ≡ 0} ≤ dimPM f
− 1.

Therefore

Ind f M ≥ 1.

Supposing that Ind f M = 1, we have

dimPM f
− 1 ≤ dim{X ∈ PM f

: 〈X, η〉 ≡ 0} ≤ dimPM f
− 1,

and consequently,

dim{X ∈ PM f
: 〈X, η〉 ≡ 0} = dimPM f

− 1.
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��
Now, let us obtain a necessary condition for a CWMC hypersurface Mn with finite

weighted volume to satisfy the following equality:

Ind f (M) = dimPM f
− dim{X ∈ PM f

: 〈X, η〉 ≡ 0}.
For this, we will prove some lemmas. They are adaptations of known results.

Lemma 3 Let Ω ⊂ M be a compact set and let u, v ∈ C∞(Ω), then∫
Ω

(uΔ f v)e− f dσ +
∫

Ω

〈∇u,∇v〉e− f dσ =
∫

∂Ω

uν(v)e− f d∂Ω, and (28)
∫

Ω

(uΔ f v − vΔ f u)e− f dσ =
∫

∂Ω

(uν(v) − vν(u))e− f d∂Ω, (29)

where ν denotes the exterior unit normal to Ω along ∂Ω .

Proof In fact,

div(e− f u∇v) = e− f u div(∇v) + 〈∇(e− f u),∇v〉
= e− f uΔv − e− f u〈∇ f,∇v〉 + e− f 〈∇u,∇v〉
= e− f uΔ f v + e− f 〈∇u,∇v〉.

Integrating both sides from above identity and applying the divergent theorem to the field
X = e− f u∇v, it follows the equality (28). The equality (29) is obtained by integrating the
difference uΔ f v − vΔ f u and applying the equality (28). ��
Lemma 4 ( [10], Corollary 3.10) Suppose that M is a complete hypersurfacewithout bound-
ary. If u, v are C2 functions with∫

M

(|u∇v| + |∇u| |∇v| + |uΔ f v|) e− f dσ < ∞, (30)

then ∫
M
u(Δ f v)e− f dσ = −

∫
M

〈∇v,∇u〉e− f dσ. (31)

Let W 1,2(e− f dσ) be the weighted Sobolev space, which is the space of the functions u
on M satisfying ∫

M
(u2 + |∇u|2)e− f dσ < ∞,

with the norm

|u|W 1,2
f

:=
(∫

M
(u2 + |∇u|2)e− f dσ

) 1
2

.

Lemma 5 Let Mn be a CWMC hypersurface isometrically immersed in a gradient Ricci
soliton M f that satisfies Ric f = kg. Suppose that h is a C2 function with L f h = −μh for
μ ∈ R.

(i) If h ∈ W 1,2(e− f dσ), then |A|h ∈ L2(e− f dσ) and∫
M

|A|2h2e− f dσ ≤
∫
M

(
(1 − k − μ)h2 + 2|∇h|2) e− f dσ. (32)
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(ii) If h > 0 and φ ∈ W 1,2(e− f dσ), then∫
M

φ2 (
2|A|2 + |∇ log h|2) e− f dσ ≤

∫
M

[
4|∇φ|2 − 2(μ + k)φ2] e− f dσ. (33)

Proof Part (i): Let φ ∈ C∞
c (M). Note that

Δ f h
2 = 2|∇h|2 + 2hΔ f h

and

Δ f h = (
L f − |A|2 − k

)
h = − (

μ + |A|2 + k
)
h. (34)

By Lemma 3 and equality (34),∫
M

〈∇φ2,∇h2〉e− f dσ = −
∫
M

φ2Δ f h
2e− f dσ

= −2
∫
M

φ2 [|∇h|2 − (
μ + |A|2 + k

)
h2

]
e− f dσ. (35)

Assume now thatφ ≤ 1 and |∇φ| ≤ 1. Rearranging the terms in (35) and using the inequality

0 ≤ |φ∇h − h∇φ|2 = φ2|∇h|2 + h2|∇φ|2 − 2φh〈∇φ,∇h〉 ≤ |∇h|2 + h2 − 2φh〈∇φ,∇h〉,
we have∫

M
φ2 (

2k + 2μ + 2|A|2) h2e− f dσ = 4
∫
M

φh〈∇φ,∇h〉e− f dσ + 2
∫
M

φ2|∇h|2e− f dσ

≤ 2
∫
M
h2e− f dσ + 4

∫
M

|∇h|2e− f dσ. (36)

Finally, consider the intrinsic ball Bj = Bj (p) in M of radius j and center at a fixed point
p ∈ M . Applying (36) with φ = φ j , where φ j is one on Bj and cuts off linearly to zero from
∂Bj to ∂Bj+1, letting j → ∞, and using the monotone convergence theorem we obtain∫

M
|A|2h2e− f dσ ≤

∫
M

(
(1 − k − μ)h2 + 2|∇h|2) e− f dσ.

Part (ii): Now we will prove the inequality (33). In fact, log h is well-defined and

Δ f log h = 1

h
Δ f h − |∇ log h|2 = 1

h
L f h − |A|2 − k − |∇ log h|2

= −μ − |A|2 − k − |∇ log h|2. (37)

Let ψ ∈ C∞
c (M). It follows from Lemma 3 and expression (37) that∫
M

〈∇ψ2,∇ log h〉e− f dσ = −
∫
M

ψ2(Δ f log h)e− f dσ

=
∫
M

ψ2 (
μ + |A|2 + k + |∇ log h|2) e− f dσ. (38)

Combining (38) with the following inequality

〈∇ψ2,∇ log h〉 ≤ 2|∇ψ |2 + 1

2
ψ2|∇ log h|2,

gives us this∫
M

ψ2 (
2|A|2 + |∇ log h|2) e− f dσ ≤

∫
M

(
4|∇ψ |2 − 2μψ2 − 2kψ2) e− f dσ. (39)
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Letψ j be one on Bj and cut off linearly to zero from ∂Bj to ∂Bj+1. Sinceφ ∈ W 1,2(e− f dσ),
applying (39) withψ = ψ jφ, and letting j → ∞, using themonotone convergence theorem,
we get ∫

M
φ2 (

2|A|2 + |∇ log h|2) e− f dσ ≤
∫
M

[
4|∇φ|2 − 2(μ + k)φ2] e− f dσ.

��
Remark 5 Lemma 5 was obtained by Colding and Minicozzi (see [10], Lemma 9.15) for a
complete noncompact hypersurface � ⊂ R

n+1 without boundary that satisfies H = 〈x,η〉
2 ,

where x is position vector.

Through use Lemmas 4 and 5, and ideas as the in proof of Lemma 9.25 of [10], we have

Lemma 6 Letμ1(M) be the bottom for L2(e− f dσ) spectrum of the f -stability operator L f .
If μ1(M) �= −∞, then there exists a positive C2 function u on M with L f u = −μ1(M)u.

Moreover, if w ∈ W 1,2(e− f dσ) and L f w = −μ1(M)w, then w = Cu for some C ∈ R.

Lemma 7 Let M be a complete oriented CWMC hypersurface in gradient Ricci soliton M f .
If μ1(M) �= −∞ and Vol f (M) < ∞, then∫

M
|A|2e− f dσ < ∞. (40)

Proof Since μ1(M) �= −∞, there exists a C2 positive function h on M satisfying L f h =
−μ1(M)h by Lemma 6. Let φ j be the cut off function such that |∇φ j | ≤ 1 and φ j ≤ 1. So
φ j ∈ W 1,2(e− f dσ) because Vol f (M) < ∞. By Lemma 5, equality (33), we have

2
∫
M

φ2
j |A|2e− f dσ ≤

∫
M

φ2
j

(
2|A|2 + |∇ log h|2) e− f dσ

≤
∫
M

(
4|∇φ j |2 − 2(μ1(M) + k)φ2

j

)
e− f dσ

≤ (4 + 2|μ1(M) + k|)
∫
M
e− f dσ < ∞.

Letting j → ∞,we obtain the conclusion of this lemma by monotone convergence theorem.
��

The compact manifolds which admit a parallel vector field with respect to some metric
were characterized by Welsh in [19]. Namely, they are the compact fiber bundles over tori
with finite structural group. The dimension of the torus can be assumed to be the number
of linearly independent parallel vector fields. The noncompact manifolds case has also been
solved by Welsh in [20]. If fact,

Proposition 3 ( [20], Proposition 2.1) If a Riemannian manifold M admits a complete
parallel vector field, then either M is diffeomorphic to the product of a Euclidean space with
some other manifold or there is a circle action on M whose orbits are not real homologous
to zero.

Proof of Theorem 3 Now suppose that dimPM f
= l > 0. Since, by hypothesis,

Ind f (M) = dimPM f
− dim{X ∈ PM f

: 〈X, η〉 ≡ 0},
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we can have two cases: either Ind f (M) = dimPM f
or Ind f (M) �= dimPM f

.
Part (i): Initially, suppose that Ind f (M) = dimPM f

, i.e.,

dim{X ∈ PM f
: 〈X, η〉 ≡ 0} = 0

and there exists l independent linearly parallel unit vector fields X1, X2, . . . , Xl such that
〈X j , η〉 �≡ 0 for all j = 1, 2, . . . , l. Put

u j = 〈X j , η〉 for all j = 1, 2, . . . , l.

By Proposition 1,

L f u j = ku j ,

where Ric f = kg. Note that

∫
M
u2j e

− f dσ ≤
∫
M
e− f dσ < ∞ (41)

because

u j = 〈X j , η〉 ≤ |X j ||η| = 1.

Hence u1, u2, . . . , ul are L2(e− f dσ) eigenfunctions with negative eigenvalues −k. Since,
by hypothesis,

Ind f (M) = l > 0,

then the bottom μ1(M) of the spectrum of L f satisfies μ1(M) = −k.
Now consider a local orthonormal frame {e1, e2, . . . , en} on M . Observe that

|∇u j |2 =
n∑

i=1

|∇ei u j |2 ≤
n∑

i=1

(
n∑

k=1

a2ik

) (
n∑

k=1

〈ek, X j 〉2
)

≤ |A|2. (42)

Hence it follows from Lemma 7 and inequality (42) that
∫
M

|∇u j |2e− f dσ ≤
∫
M

|A|2e− f dσ < ∞

and using (41), we get u j ∈ W 1,2(e− f dσ). By Lemma 6, u j > 0 on M without lost of
generality. Therefore, it follows from Lemma 2 and the integrability of |A|2, that

∫
M

|A|2u j e
− f dσ = 0.

Thus |A| ≡ 0 on M .
Part (ii): In the case which Ind f (M) �= dimPM f

, we have that there exists X0 ∈ PM f
such

that 〈X0, η〉 ≡ 0. Thus X0 ∈ T M and it is parallel with respect to Riemannian connection of
(M, g). By Proposition 3, either M is diffeomorphic to the product of a Euclidean space with
some other manifold, or there is a circle action on M whose orbits are not real homologous
to zero.
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