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Abstract. In this paper we prove a monotonicity formula for the integral of the mean
curvature for complete and proper hypersurfaces of the hyperbolic space and, as consequences, we
obtain a lower bound for the integral of the mean curvature and that the integral of the mean
curvature is infinity.

1. Introduction and main results

Let H™"(5) be the (n+1)-dimensional hyperbolic space with constant sec-
tional curvature s <0. The main result of this paper is the following

Theorem 1.1. (Monotonicity) Let M™, n>3, be a complete and proper hy-
persurface of H"1(5) with mean curvature H>0. If there exists a constant I'>0
such that scalar curvature R satisfies x< R< %H—F%, then the function p: R—R
defined by

r
ez"
r=————-" sinh v/—3p)H dM
) (sinh v/—2er) "7 /MnBT( )

is monotone non decreasing, where p is the geodesic distance function of H" 1 ()
starting at peH" 1 (5) and B,.=B,(p) denotes the geodesic open ball of H" ()
with center p€H" 1 (3¢) and radius r. Moreover, if I <(n—3)\/—s, then

/ H dM =oo.
M
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The monotonicity of Theorem 1.1 above implies the following estimate for the in-
tegral of mean curvature:

Corollary 1.2. Let M™, n>3, be a complete and proper hypersurface of
H"+1(%) with mean curvature H >0. If there exists a constant T'>0 such that the
scalar curvature R satisfies x<R< %HJr}f, then

/ H dM > (sinh v/ —%r)an?’ / Ce =7 dr
MNB, 7o
for all r>rg, where C=C(ro, M, p) is a constant depending only on ro, M and p.

Remark 1.3. In this direction, we can cite the following result of H. Alencar,
W. Santos and D. Zhou, see [3], proved in the context of higher order curvatures,
whose version for mean curvature we state below.

—n+1 . . . .

Let M (5) be an (n+1)-dimensional, simply connected, complete Rieman-

nian manifold with constant sectional curvature », and let M™ be a complete,
. S5n+1 .

noncompact, properly immersed hypersurface of M (). Assume there exists a
nonnegative constant « such that

|R—3| <aH.

If PP=nHI—A is positive semidefinite, where I: TM —TM 1is the identity map,
then for any g€ M such that H(q)#0 and any 1o>0, there exists a positive constant
C, depending only on pg, ¢ and M such that, for every pu>pug,

o
/ B Hsz/ Ce 7 dr,
MnB(p) Ko

where B, (p) is the closed ball of radius p and center qeﬁn+1(%). In particular, if
#<0, R=3, H>0 and H#0, then fMHdM:oo.
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2. Preliminary results

Let H™"(5) be the (n+1)-dimensional hyperbolic space with constant sec-
tional curvature se.



Let A: TM —TM be the linear operator associated to the second fundamental
form of the immersion. The first Newton transformation P, : TM —T M is defined
by

P =nHI—A,

where I: TM —TM is the identity map.

Notice that, since A is self-adjoint, then P is also a self-adjoint linear opera-
tor. Denote by k1, ko, ..., k,, the eigenvalues of the operator A, also called principal
curvatures of the immersion. Since P is a self-adjoint operator, we can consider its
eigenvalues A1, Ao, ..., A\, given by \;=nH —k;, i=1,2,....n

If H>0 and R> s, then P; is semi-positive definite. This fact is known, and
can be found in [1], Remark 2.1, p. 552. We include a proof here for the sake of
completeness. If R>s, then (nH)?=|A]?+n(n—1)(R—3)>k?, for all i=1,2,....,n
Thus 0<(nH)?—k2=(nH —k;)(nH +k;) which implies that all eigenvalues of P; are
non-negative, provided H >0, i.e., P; is semi-positive definite. Let us denote by V
and V the connections of H" "1 (5) and M, respectively. In order to prove our main
theorem we will need the next two results.

Lemma 2.1. Let z: M™"—H""(5) be an isometric immersion, p(x)=p(p,x)
be the geodesic distance function of H"T1(sx) starting at peH"*1(x), and
X= %vp the position vector of H" (), where Vp denotes the gradient
of p on H"™1(5¢). Then, for every qe M,

tr(Er— P ((VeX)"))(q) =n(n—1)H(qg)(cosh v—3p(q))-

Proof. Let v be the only unit geodesic of H""1() going from p to ¢q. Let
{e1(q),e2(q),...,en(q)} a basis of T,M made by eigenvectors of P, i.e., Pi(e;(q))=
Ai(q)ei(q), where \;, i=1,...,n, are the eigenvalues of P;. Writing e;=b;7"+¢;Y;,
where ||Y;||=1 and (7/,Y;)=0, we have b?+c7=1, and
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On the other hand,

(s (522
() ()1
= (cosh v/=3p) (7,7} = cosh v/=3¢p,
(VX Y>:<V (Sin};gpv) Y>
—(c h\/——zp)<'y/,Y>+<Sin}\l/\/—7p><vw”Y Y;)
—0,
Ty Xor) = <W (Si“f/*_/_?p 7’) y >
=Y Sin}gp><v’,w’>+(Sm%?pyvviv v
() ) (2
(o(#52)
= (cosh V/=p)(+',Y;) =0,
(V. X, Y:) = <W<Sin}\l/‘/_7pv)%>
() s (B
inh v/~ p y,

(VuVp, V) =/ =s(cothv=p) ((U, V)= (Vp,U){Vp,V)),



for any vector fields U, Ve TH" (), see [4], p. 713, and [2], p. 6, we have

n

YT X ) = o oty 4 () 9,90, 1)

= Z \ib?(cosh v/—p)
i=1

+Z>\ 25‘“}%_”F(cothf>(<m,x>

+(Vp,Yi)(Vp,Yi))

= (cosh v/—p) Z Ai[b7+¢7] = (cosh v/—3p) Z i

=1

=n(n—1)H(cosh/—p). O

Proposition 2.2. Let x: M"—H""1(3) be an isometric immersion, p(z)=
p(p,z) be the geodesic distance function of H" 1 (5¢) starting at peH" (), and
Y:% V;"”Vp the position vector of H" (), where Vp denotes the gradient of
p on H" L (5). If f: M—R is any smooth function, then

div(Py (fX7)) = (X, Pi(V[))+n(n—1) fH(cosh v/—sp)+n(n—1)(R—x) f(X,n),

where V f denotes the gradient of f on M, XT=X—(X,n)n is the component of
X tangent to M and n is the unit normal vector field of the immersion.

Proof. Let {e1,ea,...,en}t be an adapted orthonormal frame tangent to M.
Since A and Py=nHI— A are self-adjoint, we have

n n

tr(Ev— P ((VeSX)")) =D (PU((Ve S X)T) i) =Y (Ve (fX), Pi(e:))

=1 i=1

<vei (fXT) +v8i (<f7, 77>77), Pl(el)>
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(Ve, (fX7), Pr(e))—f(X,n) tr(AoPy)
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(Py(Ve,(fXT)),ei)—f(X,n) tr(AoPy)

1
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(T (PLEXT)) )~ S (Ve PO(XT) 1)

i=1

I

©
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—

— (X, n) tr(AoP)
=div(Py(fX")) = (div P) (fX") - f(X,n) tr(AoPy).

By using Gauss equation, we have

tr(AoPy) =tr(nHA—A®) =nH tr A—tr A =n>H*—|A]> =n(n—1)(R—5)
and, since div P; =0, see [5], p. 470 and [6], p. 225, we have
2.1) tr(E— P ((VeX)"))=div(P (fXT))—n(n—1)(R—3x)f(X,n).

On the other hand, by using Lemma 2.1, we have

tr(Er— P (VefX)T) =Y (Ve (fX), Pi(e:))

I

=D (DX +fV. X, Pi(er))

n

Z <X P (el(f> 1)>+fz <v€iy7 Pl(ei)>

=1 i=1

=(X, PV +[tr(Er— P ((VeX)T))

(2.2) = (X, P(V[))+n(n—1)H f(cosh v/—3p).
Replacing (2.2) in (2.1) we obtain the result. O

Lemma 2.3. Let x: M"—H"*! (), n>3, be a proper isometric immersion.
Suppose H>0 and R> . Let p=p(p,-) be the geodesic distance function of H" 1 (s¢)
starting at p€H" 1 (5¢). Let h: R—R be a smooth function such that h(t)=0 for t<0
and h(t) is increasing for t>0. If f: M—R is any non negative locally integrable,



C! function, then for all t>s>0,

1 .
T M s an

W/ h S— p blnh \/_p)fHdM
1

T2 /9 (smh\/—
+(n—1)(R—3) fn) dM dr.

/hr p)(sinh v/=5¢p)(Vp, Pl(Vf)

Proof. Applying Proposition 2.2 to h(r—p(z))f(z), we have

div(Py (h(r—p)fXT)) = =b'(r—p) f(X, PL(Vp))+h(r—p)(X, P((Vf))
+n(n—1)h(r—p)fH(cosh v—p)
(2.3) +n(n—1)(R—s)h(r—p) f(X,n).

Since h(r—p)fX7T is supported in MNB, and M is proper, then h(r—p)fX7 is
compactly supported on M. Thus, by using divergence theorem, we have

(2.4) /M div(Py(h(r—p) fX")) dM =0.

Integrating (2.3) and by using (2.4) above we have
| We-pf (X PR db = [ - p) (X P(T$) M
M M
n(n—l)/ h(r—p)fH(cosh/—3p) dM
M

(2.5) +n(n—1) /M h(r—p)f(R—3x){X,n)dM.

Let k1, ko, ..., k, be the principal curvatures of the immersion and \;=nH —k;
the eigenvalues of P;. From H >0 and R>, P; is semi-positive definite, that is,
Ai>0 (i=1,2,...,n). Since

N =nH-—k; SnH+|kl| SnH—l—\/k:f—i—k%—i——i—k%

<nH+|A|<nH+/n2H2—n(n—1)(R—x)

<2nH,
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we have

/ X _ / (sinh \/_p)
<2n/ h(r—p)f(smil/fp)HdM
(2.6) = n— </ h(r—p) S0 \/_p)HdM)
From (2.5) and (2.6) we obtain
d (sinh /—5p)
— (sinh /= p)
> [ =) S (v ) vt
+n(n—1) /M h(r—p) fH(cosh /—p) dM

+n(n—1) /M h(r—p)%(}%_%) (Vp,n)dM.

Since cothz is a decreasing function, we can estimate the second integral in the
right hand side of inequality above by

/M h(r—p)fH (cosh \/—p) dM
> \/—(coth /=) /M h(r—p)% HfdM,

which implies

4 ( /M h(r— p) f SV =P) dM)

dr V=
> nT_I\/:f(coth \/—_m“)/ h(r—p)f%HdM
w3 [ = I (G Lo (V- 1) (R



Since
() () [
e e =y p)wﬂvf aM
+d% (/M h(r—p)%fﬁdﬂf}
we have

g /M h(r_m@@%p1<Vf>+<n—1><R—x>fn>dM

Dividing expression above by (M ::"f’ ) it

s to t we obtain the result

/ h(t—p)(sinh /—3p) fH dM

1
(sinh v/=2¢s) "

1t 1 . o
25/5 W/Mh(rp)(smh \/_%p)<Vp, ~Py(V)

—|—(n—1)(R—%)f77> dMdr. O

X (v/—32) "% and integrating on 7 from

(sinh \/_t
/M h(s—p)(sinh /= p) fH dM

3. Proof of Theorem 1.1

Proof of Theorem 1.1. Choosing f=1 in the inequality of Lemma 2.3, we have,
for every t>s>0,

1

T M o

1 .
= ey au
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1 /¢ 1 _ -
) (sinh /)" | =) vt =) (V. (1= 1)(R=e)) a2 dr
1 t
_5/8 (smT/ h(r—p)(sinh v/=p) (n—1)(R—3) dM dr
.

t
e — h(r—p)(sinh /— HdM dr.
2 /s (smh V- / 2 )

Letting g(r)=

mes

h(r—p)(sinh /—sp)H dM, inequality above beco-

(sinh r

which implies
i.e.

and thus

r

e57g(r) = 3" (sinh v/ —rer) "7 /M h(r—p)(sinh v=52p) H dM

is monotone non-decreasing. Now, let us apply this result to the sequence of smooth
functions h,,: R—R such that h,,(t)=0 for t<0, h,,(t)=1 for tZ% and h,, is
increasing for t€(0, %) Taking m—o00, sequence h,, tends to the characteristic
function of (0, 00) and the first part of the theorem follows.

To prove that [,, HdM =00 for I'<(n—3)y/—3, notice that monotonicity of
©(r) implies

/ (sinh v/ —3cp)H dM
MNB,.

n—1
r sinh\/—zr \ 2
>ezlro—n) ( 2V 2 / inh /= p)H dM
=¢ (sinh \/—_%T0> MNBy, (Sln %p) ’

for all r>7y>0. Since sinh x is an increasing function, we have

/ (sinh v/ —3¢p)H dM < (sinh v/—3er) / HdM,
MNB,

MNB,
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which implies

. — n—3 Lro
/ HdM > (sinh v/ F%r) 2 ez _
MNB, ez’ (sinh \/—3rg) 2

/ (sinh\/—3p)H dM.
MNB,,

Since sinh \/—}ﬂ“:%(e‘/:”—e_\/_—’”), taking r— oo, and by using that I'<(n—3)
V=, we obtain [,, HdM=oco. [
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