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Abstract. The motivation of this paper is to study a second order elliptic operator which
appears naturally in Riemannian geometry, for instance in the study of hypersurfaces
with constant 7-mean curvature. We prove a generalized Bochner-type formula for such a
kind of operators and as applications we obtain some sharp estimates for the first nonzero
eigenvalues in two special cases. These results can be considered as generalizations of
the Lichnerowicz-Obata Theorem.
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1 Introduction

Let {wy, ..., w,} be a local coframe field defined on a Riemannian manifold
(M, g). For a symmetric tensor ¢ = ZZj:l ¢ijw; ® w;j on M, Cheng and Yau,
see [11], define an operator associated to ¢ by

Of =Y &fi- (1.1)
ij=1
In this paper, we prove the following new Bochner type formula.

Theorem 1.1. Let M" be a Riemannian manifold and ¢ = ZZj:l dijwi @w; be
a symmetric tensor defined on M. Then, for any smooth function f : M — R,
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and for any c € R,
1
2D(|Vf|2) = (VAVEN) +{o(V ), V(AS))

+ 2 Z ¢ijfjkfki +2 Z ﬁf/¢1mRmk/k

ij.k=1 ij.km=1

+c Z(tf@i/ﬁf/ - Z Ji i Agij

i,j=1 ij=1
+ Zfzf/ <Z¢ikk—cz¢kki> (1.2)
i,j=1 k=1 k=1 j
+ Z Z Jifi(@jix — Pjxi)
k=1 \i.j=1

- Z Z Ji®ij fir

n
k=1 \ij=1 .

Remark 1.1. If ¢ is equal to the metric g, then Y ;_, (ZZ/‘:I qubijfik)k =

) A|V £]?, and Theorem 1.1 is exactly the Bochner formula for the Laplacian

AV fI> =2(Vf, V(Af)) + 2| Hess f|* + 2Ric(V £, V f).

Remark 1.2. Notice that the last two terms in (1.2) are in divergent form and
thus their integrals vanish when the manifold M is compact. In applications we
have some natural examples of ¢ satisfying > ;_; ¢k — ¢ Y 1, dixi = O for
some constant ¢ (see Appendix).

Of course, an application of the new Bochner formula is to recover the well-
known Lich- nerowicz-Obata Theorem about the first eigenvalue for the Lapla-
cian [16] and [18].

Theorem. Let M be an n-dimensional compact Riemannian manifold with Ricci
curvature bounded below by (n — 1)a®. Then the first nonzero eigenvalue ) of
the Laplacian acting on functions of M satisfies . > na® and the equality holds
if and only if M is isometric to the round sphere.

Before we state two more applications for second order differential operators,
we discuss some known properties of L.
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Associated to tensor ¢ we have the (1, 1)-tensor, still denoted by ¢, defined
by
d(X,Y)=(¢p(X),Y), VX, Y e TM.

Here are two basic properties of the operator L.

1) It follows from Cheng and Yau (Proposition 1 in [11]) that

Of =div@v N =Y | Y ¢ | £-
j=1

i—1

2) We say that ¢ is divergence free if div ¢ = 0 or, equivalently, Z ¢ijj =0,

j=1
foralll <j <n.

If M is compact, we know that [ is self-adjoint if and only if ¢ is divergence
free (see also [11], Proposition 1). If ¢ is symmetric and positive definite, then
Ul is strictly elliptic. Therefore, if ¢ is divergence free, symmetric and positive
definite, then [ is strictly elliptic and self-adjoint. Furthermore, the spectrum of
L] is discrete and it makes sense to consider eigenvalues, see for example [14],
p.- 214.

Now let us explain the applications of Theorem 1.1 to get estimates for the
first eigenvalue for two types of operators L] which arise naturally in Riemannian
geometry and submanifold theory.

a) Let us denote by Ric the Ricci tensor of M. Namely

Ric(X,Y) = Z(Rm(x, eY, e,
i=1

where Rm(U, V)W = VyVyW — VyVy W 4 Viy. W is the curvature tensor
of M. The scalar curvature R of M is defined by the trace of Ricci tensor. We
will also denote by Ric the linear operator associated with the Ricci tensor, i.e.,
Ric(X, Y) = (Ric(X), Y), as well as its coordinates will be denoted by Ric;;. If
{e1, ..., ey} is an orthonormal frame, the components of the curvature tensor of
M can be written by (see [8] p. 48)

1 . . . .
Riju = b2 (Ricix gj1 — Ricy gjx + Ricj gix — Ricjx i)

- ik8jl — &il8j Wijki -
(n_l)(n_z)(gkg/l gig&jk) + Wiju



494

where W;jy; are the components of the Weyl tensor W.
When n > 3, the components of Schouten operator S of M are defined by

Sij = RiCij _2(71 _ 1)gij-

In this case, one can rewrite the components of the curvature tensor by

Riju = . (Sikgji — Sugjx + Sjgik — Sjx&it) + Wiju-

-2
The operator U is defined by

n

n . R
Usf = Z Sij fij = Z <Rlcij T2 — l)gij) fij-

ij=1 ij=1

We prove (see equation (5.1), p. 512) that S is divergence free (or equivalently,
Us is self-adjoint) if and only if M has constant scalar curvature.

Definition 1.1. A Riemannian manifold is called to have harmonic Weyl tensor
ifdivw = 0.

In this case, the Schouten operator is a Codazzi operator, i.e., S;jx = Si;. Our
first application of Theorem 1.1 is the following

Theorem 1.2. Let M", n > 4 be a compact Riemannian manifold which has
harmonic Weyl tensor. If M has constant scalar curvature R and the Schouten
tensor is positive definite, then the first nonzero eigenvalue |1 (g, M) satisfies

wi(Us, M) >

n—2 R e < R +K)L+1KR] (1.3)
2(n—1)<R—2L0)|:0_ 2n—1) @ )TN

where Ky and Ly are the lower bounds of the sectional curvature and Ricci
curvature of M, respectively.
Furthermore, the equality holds if and only if M is the round sphere S" (K).

Remark 1.3. Recall that a Riemannian manifold (M, g) is said locally con-
formally flat if, for any p € M, there exists a neighborhood V of p and a
smooth function f defined on V such that (V, e?/g) is flat. It is well known
(cf. [8], p. 60) that M", n > 4, is locally conformally flat if and only if the
Weyl tensor vanishes. In [9], Q.M. Cheng has proved that the only compact,
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connected, oriented, locally conformally flat, n —dimensional Riemannian man-
ifold with constant scalar curvature and non-negative Ricci curvature are those
which are quotients of a space form or a Riemannian product S' x $"(«). On the
other hand, there are many examples of compact manifolds with harmonic Weyl
tensor, see, for example, [8], p. 440-443.

b) Our second application is about isometric immersions.

Let M" be a n-dimensional Riemannian manifold and x : M" — M
be an isometric immersion of M to (n + 1)-dimensional Riemannian manifold.
Denote by A and H the shape operator and the mean curvature of the immersion.
If A1, Ao, ..., A, are the eigenvalues of A, i.e. the principal curvatures of the
immersion, then H = ) " | ;.

The first Newton transformation Py : TM — T M, associated with the sec-
ond fundamental form A, is defined by

P=HI - A.

Let us define the differential operator L, by

Lif =) (P)ijfy =) (Hgyj—hify, (1.4)

ij=1 ij=1

where h;; are the components of second fundamental form. Note that P; is a
symmetric linear operator. The operator L; was first introduced by Voss in [24]
and appears naturally in the study of variation theory for curvature functional
A = f v HdM, which is called 1—area of M. See for example [20] and [7] for
more details.

It has been shown by Reilly, [20], that P; is divergence free when M is a space
form of constant sectional curvature. Therefore, under these assumptions, L, is
self-adjoint.

The eigenvalues of L; plays an important role in the study of stability for
hypersurfaces with constant r-mean curvature (see, for examples, [1, 2, 3, 4, 6]).
In the case that A > 0, we have Pj positive definite. Therefore, L, is an elliptic
operator. We have the following first eigenvalue estimate.

+1 . .. .
Theorem 1.3. Let x : M" — M" (k) be an isometric immersion of a com-
pact Riemannian manifold into a space form of constant sectional curvature k.
Suppose that shape operator A satisfies

O<al <A <aual,

where o > 0 and a > 1 are constants. Then
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1) whenk > 0, the first nonzero eigenvalue ;u (L1, M) of operator L, satisfies

2)

na

1
L, M) >
WLy )_2<na—l

) [Z(n —Da*n—a®) +2k(n — 1)’a — 0]

where o = max tr(Hess H|,.)(p) and v*- = {u € T,M; (u, v) = 0};

(p,v)eTM
whenk < 0, the firstnonzero eigenvalue ;u (L1, M) of operator L satisfies
1 na 3 2 2
/L(Ll,M)Zz . [2(n — Do’ (n — a®) + 2k (n — 1)’aa — o].
na —

Furthermore, the equalities hold if and only if M is a geodesic sphere with the
canonical immersion.

Remark 1.4. If A > o/ > 0 then, by using Gauss equation,

Ric > (n — D[« + &*] = Ricgi() > 0,

for > > —k. Thatis: Ric > (n — 1)A > 0 for some constant A > 0.
Conversely, if we assume the Lichnerowicz condition Ric > (n — 1) A > 0, then
by using Gauss equation again, we have (A o Py(X), X) > (n — 1)[A — k]| X|%.
If we assume in addition that P; > 0 and A > «, then A is positive definite.

Remark 1.5. If the mean curvature H is constant and A > « I, then x (M") is a
geodesic sphere. In fact,

ey

2

if k = 0, by Hadamard theorem, cf. [15], [12], the immersion x : M" —
R"*! is an embedding and x (M") is a boundary of a convex domain of
R™t! Thus by using the Alexandrov Theorem, cf. [5], x(M") is a round
sphere;

if k > 0, by do Carmo-Warner Theorem, cf. [12], thenx : M" — S (k)
is an embedding and x(M") is either totally geodesic or contained in a
open hemisphere. In the last case, x(M") is a boundary of a convex
domain in S"*! (k). Since A > «I > 0, x (M) cannot be totally geodesic.
Thus x (M) is contained in an open hemisphere. On the other hand, in[17],
S. Montiel and A. Ros proved that if x : M" — S"*!(k) is an embedding
such that the r-mean curvature S, is constant for some r and x(M") is
contained in a open hemisphere, then M" is a geodesic sphere;
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(3) if « < 0, by do Carmo-Warner Theorem, cf. [12], then x : M" —
H"+! («) is an embedding and x (M") is a boundary of a convex domain in
H"+! (k). On the other hand, in [17], S. Montiel and A. Ros proved that
if x : M" — H""!(k) is an embedding such that S, is constant for some
r then M" is a geodesic sphere.

The rest of the paper is organized as follows: In Section 2, we give the proof
of Theorem 1.1, in Section 3 we prove Theorem 1.2, and in Section 4 we prove
Theorem 1.3. Eventually, in the Appendix, we prove Proposition 5.1, which col-
lects some properties of the Newton and Shouten tensors that we use throughout
the paper.

2 A Bochner-type formula

In this section we will prove a Bochner type formula for the differential operator
[J mentioned in the introduction.

Proof of Theorem 1.1. For a point p € M, for any orthonormal frame
{e1, ..., ey} near p, we have |V f? =)"_ (f;)? and

1 1 n n
LUV = 530 > enlfp

i=1 jk=1
= > 3 o+ Y] D ()i (i
i=1 jk=1 i=1 jk=1
Now we choose an orthonormal frame {ey, . . ., e,} such that ¢ is diagonalized

at p,i.e. ¢jx = ;g r, where u; are eigenvalues of (¢ ;). Then we choose an
orthonormal frame in a neighborhood of p € M by parallel translating frame
{e1,...,e,} at p. Here at p, we have V,,e; = 0 at p. Moreover, V,e; = 0
along the geodesic tangent to e; which implies V,, V. e; = 0 at p for all i, j.
Thus we have

1 n n
LOUVIPY = Y i (Fji+ D biy(f)i(f)-
ij=1 ij=1

Since the terms (f;); and (f;);; denote differentiation of the function f;, in
general they are not equal to the covariant derivatives f;; and f;;; of f. However,
by the special choice of our frame, we have (f;); = f;; and (f;);; = fi;; at p.

Bull Braz Math Soc, Vol. 46, N. 3, 2015
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Therefore, at p

Zﬁﬂ/(ﬁ)// Z ﬁfjkl¢jk+ Z ﬁfm m/lk¢/k

i,j=1 i,j,k=1 i,j.k,m=1
n n n
= Z Silfixdjn)i — Z Jifix@ju + Z Ji fn Rujir® k-
i k=1 i k=1 i jdm=1
Hence

1 n
LOUVFD = (VEVAN + ) i finfi

ij.k=1

) ) @.1)
+ Z JifnRnjik®jrx — Z Jifix®jki-
i, j km=1 ij k=1
On the other hand,
— > fifikbiki = Y fifik@jic —djxi) — Y fifixdjik
ij k=1 ij k=1 ij k=1
—Z (Z fifi@jik — djki ) - Z fifi @ik — djxik
= i,j=1 o bJk=l1
Z fik fi(bjik — bjri) — Z fifijdjik
ij k=1 ij k=1
=Z (Z fifi(@jik _¢jki)) - Z fifi @ik — djxik
k=1 \i,j=1 =

Z fi fik®jixs

ij.k=1

when we used in the last equality that 37/, | fj fu®jui = D7 ;smr Ji Sij ik
Then

1D(|Vf|) =(V£ VO] + Z $iififi+ > fifuRmjixdsn

i,j,k=1 i,j,k,m=1

+ Z (Z ﬁf/ (¢jlk ¢/kl ) (22)
k

i,j=1

- Z fifi@jix — djri)k — Z fifixdjix-

i,j,k=1 i,j,k=1



499

In order to find a more suited expression for the term — Z:’ ju=t Jifi(Pjik —
®jki)x above, we use the following computation (see [11], Eq. (2.4), p. 198):

A¢ij = Z(¢ijkk — Pikjr) + Z(¢ikk/ — CPriij) + ¢ (Z ¢kk>
k=1 k=1 k=1

- Z Gk Rmikj — Z Gim Rinkkj »

m,k=1 m,k=1

i

which implies

- Z i fi@ijk — Qikj i = Z fifi <Z¢ikk _Cz¢kki>
k=1

i,j,k=1 i,j=1 k=1 j

+c Z(tr¢)ijﬁfj

ij=1

- Z Ji [ Omi Rmix; (2.3)

ij.km=1

+ Z Ji [ ®im Rkik

ij.km=1

- Z fi fi Adij.

ij=1

Rewriting the last term in right hand side of (2.2) we have

= Y fifatiik=— Y Fifavik+ Y. fixfadji+ Y, fjifiuxdij

i,j k=1 i,j,k=1 i,j,k=1 i,j k=1
n n n
==> | D fitijfuc | + D ¢ijfixfu 2.4)
k=1 \4,j=1 r bik=l

Z S fekibij + Z fj fin Rinkik @ij -

i,j,k=1 i,j,k,m=1

Equation (1.2) follows by replacing the expressions of (2.3) and (2.4) in (2.2),
and noting that

Z Ji [ Omi Rmirj = Z Ji Jm®@jk Runjikc- 0

i jkm=1 i jkm=1
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3 Estimate of first eigenvalue of the Shouten operator

The main purpose of this section is to prove Theorem 1.2. We start with proving
two lemmas.

Lemma 3.1 (Generalized Newton inequality). Let A and B be twon X n
symmetric matrices. If B is positive definite, then

[tr(AB)]?
trB

and the equality holds if and only if A = «al for some a € R.

tr(A°B) > (3.1)

Proof. Let C be a positive definite matrix. By using the Cauchy-Schwarz
inequality with A+/C and (+/C)~'B, and the fact tr[(AB)?] < tr(A%>B?), which
holds for symmetric matrices, we have

[tr(AB)]* = tr(AVC(+/C) 'B)? < tr(A%C) tr(B>C ™).
In particular, since B is positive definite, we can choose C = B to obtain
[tr(AB)])* < tr(A’B) tr B,

i.e.,
[tr(AB)?

tr(A’B) >
( )=z tr B

The equality holds if and only if
AVB =a(vVB)"'B & (AVB)VB
=a(WB)'BVB & AB=aB & A=al. O
Remark 3.1. When B = [, the inequality (3.1) becomes
. 2
IAl" = n(trA) :

which is known as the (classical) Newton inequality.
When A = [fjluxn and B = [¢;;],xn, (3.1) implies

Lemma 3.2. If ¢ is positive definite, then

- @f)>
Z Gij fix fi = re

ij.k=1
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and the equality holds if and only if, f;; = ag;;, i.e., Hess f(X,Y) = a(X, Y).
In Proposition 5.1, item (4), in the Appendix, we have

divS = V(tr S).

Therefore S is divergence free if and only if M has constant scalar curvature.
Now let us prove Theorem 1.2.

Proof of Theorem 1.2. Since S;;x = Sji; and div S = 0, the Bochner formula
of Theorem 1.1 in this case becomes

1 n
LOSIVIP = (VEV@sH) +2 3 Sijfiufii + (S, V(AN)

i,jk=1

., ., ; 3.2)
+2RIC(VE SV = Y fifiAS—) (Z fjsijﬁk) :
ij=1 k=1 \i,j=1 k

Let us integrate and estimate each terms in the equation (3.2). We will
complete our proof after proving two claims.

Claim 1. Let pu > 0 and a smooth function f : M — R such that g f = —uf,
then

/ (SC(V), V(ASf))dM = —M/ IV f1?dM.
M M
In fact, by using Divergence Theorem, we have
/ (S(AS), V(AS))YAM = / div(Af - S(V f))dM — / Af - div(S(V f))dM
M M M

= —/MAf~DSfdM

p /M fAfdM

u / V£ PdM.
M
Claim 2.

f 2RIC(VS, S(VE) = D fifjASy [dM = F/ IVfIPdM,
M M

ij=1
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where
=12 R + K L+1KR
T o1y D)0 R0

To prove this claim, first note that

Ric(V [, S(Vf)) = (Ric(V[f), S(VS))

R
= ((s+ 2y 1) ¥ 590)

R
2
ISCV O+ 2 — 1)(S(Vf), V).

Since S is a Codazzi tensor,

(AS);j = Z Sijkk = Z Sikjx = Z Skijk-
k=1 k=1 k=1

By using Ricci identity

Skijk = Skikj + Z Sk Rmiji + Z Simi Rmkjik
m=1 m=1
and following a computation of Cheng and Yau, cf. [11], we have

(AS)U = ZSkkz/ + Z Smkle/k+ Z SmlRmk/k

m,k=1 m,k=1

= (tr S)l'j + Z Soni Riij + Z SmkRmijk

m=1 m,k=1

- n; Smi <Smj +, (n B ) ,,;1 Sk Roniji

- ,,,2_:1 SmiSmi + 1) Z Smigmj + n;l Sk R
tr S

= ($Y; + Sij + Z Sk Rmijik-

m,k=1

-2

We now choose an orthonormal frame such that S;; = A;g;; at a point p € M.
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Let K (u, v) denote the sectional curvature of the plane generated by u, v. Then

2Ric(VL S(VE) = D fifiAS;

ij=1
= 22( 1)> Ao f? sz
R " n
2 —1) ;Mff—i’jzk;l M Ruiji fi 1

n R n n
= D MR gy LM DMK @ VOUVSP = (e V)]
i=1 i=1 k=1

A%

n R n n
S a2+ ) S ohifF A KoY MV = (e, V)]
i=1 i=1 k=1

" R " n—72
— A2 f2 — K A 2 KoR|V f|*.
Sy 1y Ko Tnef 4 50, KoRIVS

R
Note that, if Ky < 0, then 2 1 — Ko > 0,and if Ky > 0, then
n [—
R
— Ky = K (e;, — K
2n—1) 0 2(n—1) Z (e e) = Ko
-1
> e )Ko — Ko
2(n —1)
(" 1) Ko >0
= — > 0.
> 0
It implies,

2Ric(VS, S(VF) = D fifiAS;

ij=1

. R . n—2
A2 £2 —K A f2 KoR|V f?
S (1) Ko) Lnef 4 50 KoRIVS

) R _ n—2 )
> |:)»0+ <2(n — Ko) Ao + 2(7’[ _ 1)K0R:| |Vf| >

v
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R
where Ay = min ¢y {minlfif,, Ai(p)}. Since Ag = Lo — 2 1’ where L is
n [—

the minimum of the Ricci curvature, then the claim follows from the definition
of I'.

Now we are ready to complete the proof of Theorem 1.2. Since Ug f = —uf,
we have

/ (V£ VOsf)) = —u / IV fPdM (3.3)
M M
and, by using the Lemma 3.1,
- (Dsf)2 5
2 [ | 3 suswhi|am =2 C0) _trS/fdM (34

ij.k=1

Since, by using Divergence Theorem, [, [Zzzl (ZZ/‘:I fidij ﬁk)k] dM =
0, then replacing these estimates in the equation (3.2), p. 501, we have

2 2u? 2 2
0>—-"2u IV f|I"dM + fdM +T [V fI°dM. 3.5
M trS M M
Since
1
f IVfIPdM < / (S(V). V)
M
= f fdM,
we obtain
2 2jho 2
0> T=2w | IVfI"dM + IVfI7dM
M tr S M
Ao 2
=T —-2ull- [V f|7dM.
tI'S M
Thus

. F< tr S )
-2 \trS— X
n—72 R
- 2(n—1)<R 2L0)

r
_ n=2 Ko) Lo+ KoR
- 2(n—1)<R 2L0)|: <2<n—1)+ 0) 0+ R ]
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To prove the equality case, we suppose Ko = 1 and M" = S". In this case
-2 -2 —2)(n—1
S = n2 I,Osf = n2 Af and I' = (n )2(n ).Thentheestimate

becomes equality. Conversely, if the equality holds, Lemma 3.1, p. 500, gives
us that Hess(f) = «/. Following the proof of Obata Theorem step-by-step,
cf. [18], we can see that M is a sphere. |

4 The estimate of the first eigenvalue of L

This section will give the proof of Theorem 1.3. We start with the following
lemma.

+1 . L. .
Lemma 4.1. Let x : M" — M’ (k) be an isometric immersion of a n-
dimensional Riemannian manifold M into a (n + 1)-dimensional space form M
of constant sectional curvature k. Then

2Ric(Vf, PV [)) = (AP)(V ), V[)
= Hess(H)(Vf, Vf) = (AH)IVfIP +(QA)Vf), V), (@41

where ((APY)(V ),V f) = 301 fi fiA(Hgij — hij) and Q(A) = 2A% —
3HA? + QH? — |A> —k(n —2)A+«(2n —3)HI.

Proof. By following Schoen-Simon-Yau’s computations, see [22], eq. (1.20),
p- 278, we have

Ahij = Hij + (kn — |A)hi; — kcHgyj + H Zhikhkja
k=1

equivalently,
(AA)(X) = VxVH + (kn — |AP)AX) —kHX + HA*(X).
It implies
—((AP)VS), V) = (AA=(AH)D)(V[), V[)
= ((AAV)),Vf) = AH|VfI?
= Hess(H)(Vf, Vf) + (kn — [AP)(AVf), Vf)
+H(AXV ), Vf) —cHIVfI> = AH|V fI*.
By using Gauss equation
(Rm(X,Y)Z, T) = «({X,Z)Y,T)— (Y, Z){X, T))
+(A(X), Z)(A(Y), T) — (A(Y), Z)(A(X), T),



506

we have

Rm(Vf, e)Pi(V[), e) = k((Vf, Pr(V[))ei, ei) — (e, PV )NV ], ei))
+(ANV ), Pi(V ) (Ale), ei)
—(A(ei), PI(V AV ), ei).

After tracing, we obtain

2Ric(Vf, PV ) = 2k(n = IV f, Pu(V [)) +2H(A(V ), Pi(V f))
—2(A*(Vf), PV )
= 2k(n — D(Vf, (HI = A)(V ) + 2H(AV ),
(HI — A)(V ) = 2{A*(Vf), (HI = A)(V [))
= 2c(n = DH|Vf? + (2H? = 2c(n — D)(A(V f), Vf)
—4H(AX(V[), V[) +2(AXV ), V).

Then

2Ric(Vf, PV ) = (AP)(VS), V) =
Hess(H)(V f, V.f) = (AH)IVf >+ (Q(A)(V f), V). O

Next lemma is a local estimate for Q (A).

Lemma4.2. If0 < ol < A < aal then,
(i) ifk >0,

(QA)X), X) = [2(n — D’ (n — a®) + 2k (n — 1)’ |X],

(ii) ifk <0,

(Q(A)(X), X) = [2(n — D’ (n — a®) 4 2k (n — 1)?aa ] | X,
forany X € TM.

Proof. Let {ey, ..., e,} be an orthonormal base of eigenvectors of the shape
operator A, and hy, h,, ..., h, be its eigenvalues. Denote by

1
So=) hihj = (H*—|AP).
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For « > 0, we have

(Q(A)(e), ej) =2h} —3Hh? +(QH?* — |A|Dh; —k(n — 2)h; +k2n — 3)H
=2h; —3h;(h; + H — h;) +2(H* — |A|")h; + | AR
+ k[(n—2)(H—h;))+ (n—1)H]
= (|A* = h)h; + 28:h; — 3hi (H — h;)
+ k[(n—2)(H—h)+ (n—1)H]
= h; [(IA> = h?) + 28, — 3hi(H — h))]
+ k[(n—2)(H—h))+ (n—1)H]

2 2 2
= h; (Zhl —hl.) +282—3Zhihj+3hi:|

Jj=1 j=1
+ kl(n—=2)(H—h;))+ (n —1)H]

= h; 252+2hf+2n:h§ —2Xn:h,~h, —Xn:hihj:|
j=1

i j=1 j=1
+ k[(n =2)(H —hj) + (n — D H]

> h; [zsz +2h} + Xn:hi — Zn:(hf +h3) — Xn:hihj:|

j=1 j=1 j=1
+ «[(n —2)(H —h;) + (n — 1)H]
= h; [28, — (n — DA — hi(H — h;)]
+ k[(n —2)(H —h;) + (n — 1)H]
2a[S, — (n — Da*e?1 4+ «[(n — 2)(n — Da + (n — Dna]
2u[S, — (n — Da’*e?1 4+ 2k (n — 1) %«
2a(n(n — l)oc2 —(n— l)az(xz) +2k(n — 1)205
2(n — Da*(n — a®) + 2« (n — 1)*«

vV IV 1V

4.2)
andif k < O,

(Q(A)(e), &) > 2a[S, — (n — Da*a®] + 2k (n — 1)*aa

43
>2(n — Da’(n —a®) + 2k (n — 1)%ac. 43)

O
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Now we are ready to prove Theorem 1.3.

Proof of Theorem 1.3. Applying the formula of Theorem 1.1 to the operator
L, and by using Codazzi Equation & j;x = h ji;, we have

1
2L1IVfI2 = (VLA VL)) + PV ), V(AS))

+ 2 Z (Hgij — hij) fix fui

ij.k=1

+ 2Ric(Vf, Pi(Vf)) = ((AP)(V ), Vf) (4.4)

> fi(Hgi; — i) f

n
k=1 \ij=I .

+ Y (IVfPH = (VH, V) i), -

k=1

Integrating this formula and, by using the divergence theorem and the fact that
L, is divergence free, we have

0 = f (vaV(Llf)>dM+/ (PL(V ), V(Af))dM
M M

+ 2/ E (Hgij — hij) fix fri | dAM 4.5)
M\ -
i,j,k=1

+/[2RiC(Vf, P (V)AM — ((AP)(V ),V [)ldM.
M

Let us estimate each of these integrals. The three first integrals in expression
(4.5) have canonical estimates, as follows. Since L; f = —uf we have

[ wrv@ipan =—u [ 1vsam.
M M
By using Divergence Theorem in the expression

div(AfP(Vf)) = Afdiv(Pi(V ) + (Pi(V ), V(ASf))
=Af-Lif+(Pi(V), V(AS)),
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we obtain
fM(Pl(Vf),V(Af))dM =—/MAf'L1fdM
:/L/ fAfdM
M
=—pu / IV fI?dM.
M

Applying Lemma 3.1, p. 500, we obtain

n (Llf)2
2/M ( Z (Hgij —hij)fjkfki) aM = 2/M (n — l)HdM

ij k=1
2 2
> M / f2dm,
nn — Daa Jy

where we have used that tr P, = (n — 1)H. To estimate the last integral, we
claim that, for x > 0,

/M[2Ric(Vf, PV )AM — ((AP)(V [),V f)ldM
> [2a(n — 1)(n — a®) + 2ka(n — 1)* — o] /M IV f|?dM
and for k < 0,
/M[2Ric(Vf, PV )AM — ((AP)(V [),V f)ldM
> 20’ (n — 1)(n — a®) + 2kaa(n — 1)* — o] /M IV fI?dM,

where 0 = max,, yerum (tr(Hess H) |, (p)), v= = {u € T,M; (u,v) = 0}. In
fact, by using Lemma 4.1, we have

fM [2Ric(Vf, PI(V ) = ((AP)(V ), V)ldM
= / [Hess(H)(Vf, V) — (AH)|Vf [ ]ldM
M

+ /M (Q(AYYf), V f)dM.
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By using Lemma 4.2, we have

/M (QA)V ), V)dM = [2(n — Da(n — a®) + 2 (n — 1)*al] fM IV fI?dM
for k > 0, and

/M(Q(A)(Vf), VydM > [2(n—1)a’(n —a?) 42k (n — 1)*aa] /M |V fI?dM
for & < 0. On the other hand,

/ (Hess(H)(V f, V f) = (AH)|V f1})dM
M

- ViOVEY )
- /M [HCSS(H) <IVfI’ IVfI) (AH)] VITan

> —0/ IV fI?dM.
M

Replacing these estimates in expression (4.5), we obtain, for x > 0,

2 2 2u? 2
0>-2u IV I7dM — o IVfIdM + fdM
M M nn — Daa Jy

+ [2(n — Da(n — a*) + 2k (n — 1)2a]/ |V fI?dM,
M
and an analogous expression for x < 0. Note that
(n—Da|VfI> < (PI(VS), Vf) < (n—Daa|V fI*.

Since éLl(fz) = fLif + (Vf, PI(Vf)), by using Divergence Theorem, we
have

/M(Vf, P (Vf))dM = —/MlefdM I,IL/Mfsz.

It implies

/ £2dM > ("_1)“/ YV FPPdM.
M n M

Denoting by C = 2(n — 1)a*(n — a?) + 2« (n — 1)?a, we have

2 2p 2
0>(2u—ao+0) IVfIdM + IVf|7dM,
M na Jm



i.e.,

2p

—2u + -0+ C<0.
na

Therefore,

1
w > < na )[2(71—1)043(71—a2)+2/<(n—1)2a—0],
2 \na—1
for k > 0, and
1
w> < e ) [201 — D3 — a?) + 2c(n — 1)ax — o],
2 \na—1

for k < 0. Now, consider the case of the canonical immersion of a geodesic

sphere x : S"(¢) — M"H(K). In this case we have A = «l, a = 1 and
Lif =n(n — DaAf. Since u(L;, M) = n(n — 1)a[a? + k] then, replacing
these data in the estimate, the inequality becomes equality and the estimate is
sharp. On the other hand, if the equality holds, the equality case of Lemma 3.1,
p. 500 implies that f;; = cg;;, for some real constant c, and following the proof
of Obata Theorem, cf. [18], we can conclude that M is a geodesic sphere.  [J

5 Appendix

In this appendix we include the Proposition mentioned in the introduction which
gives examples of tensor ¢, we refer to [10] for more related discussions.

Proposition 5.1. Let M be a Riemannian manifold.

(1) If M has constant scalar curvature and c is a real constant, then the linear
operator S, := Ric —cl satisfies div S, = 0;

1
(2) The Einstein operator E := 2R I — Ric satisfies div E = 0;

(3) If M is an immersed hypersurface in an Einstein manifold, then the Newton
transformation P satisfies div P; = 0;

4) If M is an immersed hypersurface in a space form of constant sectional
curvature, then the Newton transformation P, satisfies div P, = 0;

(5) The Shouten operator S satisfies divS = V(tr S);

(6) If M is locally conformally flat, then the Newton transformations Ti(S) =
Ty associated with S, 1 < k < n, satisfies div T(S) = 0.
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Proof. Itis well known, cf. [19], p. 39, and [11], p. 197, that
o 1
div(Ric) = 2dR.

If M has constant scalar curvature, then div(Ric) = 0, which implies that
div(S.) = 0, since c is constant. Claim (2) follows from

1 1 1
div E = div(Ric) — ) div(RI) = 2dR — 2dR =0.

The proof of claim (3) is simple and follows from well known identity
div(A) =dH,

which holds for hypersurfaces immersed in an Einstein manifold, (see [13], for
a proof). We have

div(Py) = div(HI) — div(A) =dH — div(A) = 0.

The proof of claim (4) can be found in [20] or [21]. To prove Claim (5), we can
use the identity 27:1 Ric;j; = éRi, to obtain

n n ) R
DS =) <R1°i/ T — 1)&'/‘)
j=1 j=1 J
n ] n Rl
= ZRIC,'/‘/‘ — Z 2(7’[ _ 1)gl’j
j=1 j=1
1 R;
= R —
2 2(n —1)
n—72
= R;
2(n — 1)
= (tr S);,

S.D

ie.,
divS = V(tr S).

Claim (6) was proved by Viaclovsky, and can be found in [23]. U

Acknowledgements. The authors would like to thank the anonymous referee
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