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1 Introduction

We consider orientable surfaces Σ immersed in M2
k × R, where M2

k is a 2-dimensional,
complete, simply-connected Riemannian manifold with constant sectional curvature k. The
unit vector of the factor R is denoted by ξ . We choose a unit normal vector field e3 and
a positive orthonormal frame {e1, e2, e3} in M2

k × R so that, along Σ , {e1, e2} is a basis
for T Σ . We define θ as the angle given by cos θ = 〈ξ, e3〉, and choose e1 as the unit
vector of the projection of ξ onto T Σ ; thus, ξ = sin θe1 + cos θe3 . The frame {e1, e2}
is globally defined, except at points where sin θ = 0. It will be called a canonical frame.
We denote by α the second fundamental form of the immersion and will use the notation
αi j = α(ei , e j ), i, j = 1, 2. We also assume that the surfaces considered have nonzero
constant mean curvature H .

It should be remarked that, since H is constant, the immersion is real analytic. Thus, if
f is a function on Σ defined in terms of the immersion, then either f vanishes identically
or f is zero only on a closed set F ⊂ Σ with no interior points. Since the canonical frame
only fails to be defined at points where sin θ = 0, this will only occur if either Σ is a slice,
that is, a surface of the form M2

k × {t0}, or sin θ = 0 in a set F as above; in this last case,
given a point p0 ∈ F , there exists a sequence of points in the complement � F ⊂ Σ of F
that converges to p0 . Equalities among geometric quantities that are proved or assumed in
� F hold everywhere in Σ , except when Σ is a slice, which can be treated as a special case.

From now on, we assume that Σ is not a slice.

2 The results

We will first prove that, in the canonical frame {e1, e2}, Gauss equation can be written as (see
Sect. 3, Eq. (8))

K = −|dθ |2 + k cos2 θ + 2H dθ(e1).

The hypothesis of our theorem is a slight modification of the Gauss equation.

Theorem 1 Let Σ � M2
k × R be an orientable surface with H a nonzero constant. Choose

an orientation so that H > 0. Assume that, at p ∈ Σ ,

K = −|dθ |2 + k cos2 θ ± 2H |dθ |, (1)

holds. Then, Σ is invariant under a 1-parameter group of isometries of the ambient space
that fixes an axis �0 parallel to ξ and passes through one or two fixed point of the closures

M
2
k of M2

k .

If k > 0, the isometries are generated by rotations of M2
k around a point p0 ∈ M2

k whose
trajectories are circles.

If k < 0, the isometries are elliptic, parabolic or hyperbolic depending on whether the
trajectories are circles, horocycles or hypercycles, respectively. In the two last cases, there
are one or two fixed points in ∂ M2

k .
The method of proof of the Theorem can be used to give a proof of an interesting property

of surfaces in the euclidean space R
3.

Corollary 1 (of the proof of the Theorem). Let Σ2 � R
3 be an immersion of a compact

surface Σ in R
3 with the mean curvature H constant and positive. Assume that

K = −|dθ |2 ± 2H |dθ |, (1′)
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where θ is the angle which the unit normal vector e3 to the surface Σ makes with a fixed axis
in R

3 (for instance, the coordinate axis 0z). Then, Σ is isometric to the canonical sphere S2

and the immersion is the standard embedding of S2 into R
3.

It will be shown in the proof of the Theorem that the condition (1) implies, but it is not
equivalent to, that α(e1, e2) = 0 in Σ , that is, the canonical frame diagonalizes the second
fundamental form. The same occurs with condition (1′). Now, recall a theorem due to H .
Hopf that if Σ has genus zero and the complex quadratic form on Σ

α(2,0) = {
(α(e1, e1) − α(e2, e2)) − 2iα(e1, e2)

}
dz2

vanishes identically, that is, α11 = α22 and α12 = 0, then Σ is isometric to a sphere. It is
surprising that we can obtain the same conclusion from the weaker condition α12 = 0.

Remark Surfaces Σ with the property that the projection of ξ onto T Σ is a principal direction
appeared in our paper [2] and, independently in [5], where an explicit description of such
surfaces is given.

Corollary 1 can be given an interesting integral form, namely,

Corollary 2 Let a compact surface Σ be immersed in R
3 with mean curvature constant and

positive. Assume that
∫

Σ

( − |dθ |2 ± 2H |dθ |) = 2πχ(Σ), (1′′)

where χ(Σ) is the Euler characteristic of Σ . Then, Σ is isometric to the standard sphere
and the immersion is the standard embedding in R

3.

We can also treat the case of Corollary 1 when Σ is complete and non-compact.

Corollary 3 Replace in Corollary 1 the condition that Σ is compact by the condition that
Σ is complete, non-compact. Assume that (1′) holds. Then, Σ is a Delaunay surface.

Finally, we present an integral form of our Theorem.

Corollary 4 Let Σ � M2
k ×R be an immersed surface with constant mean curvature H > 0.

Assume that there exists a geodesic triangle T in Σ with interior angles β1 , β2 , β3 which
satisfies

π −
3∑

i=1

βi =
∫

R

−|dθ |2 + k cos2 θ ± 2H |dθ |,

where R is the region bounded by T . Then, the conclusions of Theorem 1 hold for Σ .

An interesting application of the Theorem is a characterization of Abresch-Rosenberg
surfaces. They were completely described in the seminal paper [1] and are defined as those
surfaces Σ for which the complex quadratic form

Q dz2 = {
(Q̃(e1, e1) − Q̃(e2, e2)) − 2i Q̃(e1, e2)

}
dz2

vanishes identically. Here, z is a complex parameter on Σ , and Q̃ is a real quadratic form

Q̃(X, Y ) = 2Hα(X, Y ) − k〈ξ, X〉〈ξ, Y 〉, (2)
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where X, Y ∈ T Σ . By setting X = e1 , Y = e2 , and using that ξ = sin θ e1 + cos θ e3 , we
obtain from (2) that

Q dz2 ≡ 0 ⇔
⎧
⎨

⎩

α12 = 0,

α11 − α22 = k sin2 θ

2H
,

(3)

so they are all included in Theorem 1, more precisely, among those surfaces with α12 = 0.
In Sect. 5, we will distinguish them.

Remark We want to thank Harold Rosenberg for conversations on this paper.

3 Preliminaries

We choose a canonical frame {e1, e2} for a surface Σ � M2
k × R as in the Introduction, and

we want to write the Gauss equation of Σ in this frame. Recall that ξ = sin θ e1 + cos θ e3 ,
where e3 is a unit normal vector to Σ .

For future use, we will establish the Gauss equation for the more general situation where
the ambient space E3(k, τ ), k2 + τ 2 	= 0, k − 4τ 2 	= 0, is a 3-dimensional Riemannian
fibration over M2

k . The fibers of this fibration are geodesics of E3(k, τ ) whose unit tangent
vectors are denoted by ξ . Recall that τ is given by

∇̃X ξ = τ(X × ξ),

where ∇̃ is the Riemannian connection in E3(k, τ ), X is a vector field in E3(k, τ ) and × the
cross product in the tangent space of E3(k, τ ).

If τ = 0, E3(k, τ ) are the Riemannian products S2
k ×R and H2

k ×R, where S2
k is a 2-sphere

with curvature k and H2
k is a hyperbolic plane with curvature k, k < 0. For further details on

the spaces E3(k, τ ), we refer to [3].
We now start the computations for the Gauss formula. Notice that for the definition of e1 ,

we need to assume that sin θ 	= 0. As we will see in a moment, we also need to assume that
cos θ 	= 0. The second fundamental form, which is a bilinear form on T Σ , will be denoted
by α. We will denote α(ei , e j ), i, j = 1, 2, by αi j .

By the definition of θ , 〈e1, ξ 〉 = sin θ . Differentiating both sides of this equality along
the tangent vector X , we obtain

〈∇̃X e1, ξ 〉 + 〈e1, ∇̃X ξ 〉 = cos θdθ(X),

hence, by using that ∇̃T
X e1 ⊥ ξ and that ∇̃X ξ = τ(X × ξ),

〈α(X, e1)e3, ξ 〉 + 〈e1, τ (X × ξ)〉 = cos θ dθ(X). (4)

Now, set X = e1 in (4) to obtain

〈α11 e3, ξ 〉 + 〈e1, τ (e1 × ξ)〉 = cos θ dθ(e1).

Since e1 × ξ = − cos θ e2, 〈e3, ξ 〉 = cos θ , and cos θ 	= 0, we have

α11 = dθ(e1). (5)

Next, set X = e2 in (4) to obtain

〈α12 e3, ξ 〉 + 〈e1, τ (e2 × ξ)〉 = cos θ dθ(e2).
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But 〈e2 × ξ) = 〈e2 × (sin θ e1 + cos θ e3)〉 = − sin θ e3 + cos θ e1 . Thus,

α12 cos θ + 〈e1, τ cos θ e1〉 = cos θ dθ(e2),

hence, since cos θ 	= 0,

α12 = dθ(e2) − τ. (6)

From [3], we know that the Gauss formula for E3(k, τ ) is

K = det A + k cos2 θ + τ 2(1 − 4 cos2 θ), (7)

where K is the Gauss curvature of Σ , and A is the self-adjoint linear map of Σ that is
associated with the second fundamental form α. Let us compute (det A) using (5) and (6).

det A = α11 α22 − α2
12 = α11(2H − α11) − α2

12

= −α2
11 + 2Hα11 − α2

12

= −(dθ(e1))
2 + 2H(dθ(e1)) − (dθ(e2) − τ)2

= −(dθ(e1))
2 − (dθ(e2))

2 − τ 2 + 2τ dθ(e2) + 2H dθ(e1).

By using the above value of det A in (7), we obtain

K = −|dθ |2 + k cos2 θ + 2H dθ(e1) + 2τ dθ(e2) − 4τ 2 cos2 θ, (8)

which holds under the assumption that cos θ 	= 0 and sin θ 	= 0. This is an expression of the
Gauss formula in terms of H , K and θ , and the constants k and τ . Another useful expression
of (8) is

K = −(dθ(e1))
2 − (+dθ(e2) − τ)2 + 2H dθ(e1) + k cos2 θ + τ 2(1 − 4 cos2 θ). (8′)

In this paper, we use (8) or (8′) with τ = 0.
To close this section, we will give a simple proof of the fact that for vertical cylinders in

E(k, τ ), that is, surfaces for which 〈e3, ξ 〉 = cos θ ≡ 0, the Gaussian curvature K vanishes
identically.

The proof follows from the fact that since ∇̃X ξ = τ(X × ξ) has no tangent component,
for all X ∈ T Σ , then ξ is a parallel vector field along Σ , and this means that the Gaussian
curvature K of Σ vanishes identically. �


4 Proof of Theorem 1

We will start with Gauss equation (8). We first show that, although it has been proved under
the conditions sin θ 	= 0 and cos θ 	= 0, if the mean curvature H is constant, it will hold in
Σ at all points where sin θ 	= 0.

This follows from the fact that, in this case, the immersion is real analytic. Thus, if
cos θ = 0 in an open set of Σ , this will be so everywhere, and the Gauss equation

K = −|dθ |2 + k cos2 θ + 2H dθ(e1)

holds trivially on Σ except where e1 is not defined.
Now, consider the sets F1 where cos θ = 0 and F2 where sin θ = 0. By analyticity, both

are closed sets in Σ with no interior points. Let W = C(F1 ∪ F2). Then, the Gauss formula is
well defined in W , and the canonical frame {e1, e2} is well defined in C F1 ⊂ Σ . It follows,
by continuity, that the Gauss formula holds in C F1 , as we claimed.
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From now on, along the proof of Theorem 1, we will work, without further mention, in
the complement of the set F1 . Since F1 is a closed set without interior points, its complement
C F1 ⊂ Σ is open and dense in Σ . The geometric conclusions that we obtain can then be
passed to the limit to hold in Σ .

Since H > 0, we obtain, from the Gauss formula, that

−|dθ |2 + k cos2 θ − 2H |dθ | ≤ K ≤ −|dθ |2 + k cos2 θ + 2H |dθ | (9)

with equality holding in (9) if and only if e1 = ± grad θ

|grad θ | . This implies that dθ(e2) = 0,

hence α12 = dθ(e2) − τ = 0, since in our case τ = 0.
Notice that the fact that α12 = dθ(e2) = 0 means that θ is constant along the trajectories

of e2 . One of our main concerns will be to determine precisely the trajectories of e2 that will
sometimes be denoted by a capital C .

Now, assume the hypothesis of Theorem, namely, that equality holds in (9). We will need a
number of Lemmas. Some of these Lemmas (not all, though) have appeared in a more general
context in [2]. In the present situation, we have simpler proofs that we find convenient to
present here. We will denote by ∇̃ = ∇ +∇⊥ the Riemannian connection in M2

k × R, where
∇ and ∇⊥ are its tangent and normal components, respectively, along Σ . Recall that the
equalities below are proved to hold in a set � F1 ⊂ Σ , where F1 is a closed set without
interior points where sin θ is allowed to be zero.

Lemma 1 ∇e1 e1 = ∇e1 e2 = 0.

Proof Since ξ = sin θ e1 + cos θ e3 is a parallel vector field in the connection ∇̃,

0 = ∇̃e1 ξ = cos θ dθ(e1)e1 − sin θ dθ(e1)e3 + sin θ ∇e1 e1 + sin θ α11 e3 − cos θ A(e1)

(10)

where A is the Weingarten operator. Since both the tangent and normal components of (10)
must vanish, we obtain, for the tangent component,

− cos θ A(e1) + cos θ dθ(e1)e1 + sin θ ∇e1 e1 = 0.

Since α12 = 0, {e1, e2} diagonalizes A. Furthermore, ∇e1 e2 is a multiple of e2 . It follows
that at the points where sin θ 	= 0, we have that ∇e1 e1 = 0.

So, we have shown that ∇e1 e1 = 0. Since 〈e1, e2〉 = 0, ∇e1 e2 = −∇e1 e1 = 0, and this
proves Lemma 1. �

Lemma 2 The function α22 is constant along the trajectories of e2 .

Proof Since H is a constant,

e2(α22) = −e2(α11) = −∇e2 α(e1, e1) = −(∇e2 α)(e1, e1) + 2α(∇e2 e1, e1).

But ∇e2 e1 is a multiple of e2 and α(e2, e1) = 0. Thus, the last summand in the last equality
vanishes, and

e2(α22) = (∇e2 α)(e1, e1) = (∇e1 α)(e2, e1) + (R̃(e2, e1)e1)
⊥,

where we have used the Codazzi equation, and R̃ denotes the curvature of the connection ∇̃.
Since, by [2],

(
R̃(e2, e1(e1

)⊥ = 0, we obtain

e2(α22) = −(∇e1 α)(e2, e1) = e1(α(e2, e1)) − α(∇e1 e2, e1) − α(e2,∇e1 e1) = 0,

where we have used that α12 = 0 and that ∇e1 e1 = ∇e1 e2 = 0 by Lemma 1. This completes
the proof of Lemma 2. �




523

Lemma 3 The function b defined by ∇e2 e2 = b e1 is given by g = −cotan θ α22 which is
then constant along the trajectories of e2 .

Proof Since 〈ξ, e2〉 = 0, we have that

0 = e2〈ξ, e2〉 = 〈∇̃e2 ξ, e2〉 + 〈ξ, ∇̃e2 e2〉.
But ∇̃e2 ξ = 0, since in our case τ = 0. Thus,

0 = e2〈ξ, e2〉 = 〈sin θ e1 + cos θ e3,∇e2 e2 + α22 e3〉 = sin θ b + cos θ α22 .

It follows that

b = −cotan θ α22 ,

as we stated. Since θ and α22 are constant along the trajectories of e2 , so is b. This proves
Lemma 3. �

Lemma 4 The trajectories of e2 have constant geodesic curvature kg given by

k2
g = α2

22
1

sin2 θ
·

Proof We first observe that since e2 is perpendicular to ξ , the trajectories of e2 are curves in
M2

k . We know that

∇̃e2 e2 = ∇e2 e2 + ∇̃⊥
e2

e2 = b e1 + α22 e3 . (11)

To compute the geodesic curvature of a trajectory of e2, we should project ∇̃e2 e2 into the
tangent plane T M2

k . But, since M2
k is totally geodesic, ∇̃ agrees with the connection of M2

k ,
so no projection is necessary, and we obtain

k2
g = b2 + α2

22 = cos2 θ

sin2 θ
α2

22 + α2
22 = α2

22

sin2 θ
·

�

We have now concluded the preparatory lemmas and will start the proof itself. We need

some notation.
Let ∇̃ be the connection on M2

k × R and let ∇̃ = ∇̂ + ∇R be its decomposition into the
connection ∇̂ of M2

k and the connection ∇R of R. Thus, if V and W are vector fields in
M2

k × R, we have

∇̃Z W = ∇̂dπ(Z) (dπ(W )) + ∇R

dP(Z) (dP(W )),

where π : M2
k × R → M2

k is the canonical projection and dP : T (M2
k × R) → R is given by

dP(W ) = 〈W, ξ 〉ξ , so that

∇R

dP(Z) (dP(W )) =
〈
∇R

dP(Z) dP(W ), ξ

〉
ξ.

Now let β(s) be a trajectory of e1 in M2
k × R, that is,

β(s) = (
γ (s), t (s)

)
, γ (s) ∈ M2

k , t (s) ∈ R.
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Notice that, by construction, dπ(e2) = e2 . We want to show that e2 is parallel along γ (s) in
the connection ∇̂. Indeed,

∇̂γ ′(s) e2
(
γ (s)

) = ∇̂dπ(e1) dπ(e2) = ∇̂dπ(e1) e2 = ∇̃e1 e2 = 0, (12)

where we have used Lemma 1 and that α12 = 0 in the last equality and the fact that dP(e2) =
0, in the equality preceding the last one. The above equality proves our claim.

We will now prove that the curves γ (s) are geodesics in M2
k and that they constitute the

orthogonal family of the trajectories of e2 in M2
k .

To see this, we first notice that γ ′(s) is orthogonal to e2
(
γ (s)

)
. Then,

0 = γ ′(s)
〈
γ ′(s), e2

(
γ (s)

)〉 = 〈∇̂γ ′(s) γ ′(s), e2
〉 + 〈

γ ′(s), ∇̂γ ′(s) e2
〉
.

It follows from (12) and the above equality that 〈∇̂γ ′(s) γ ′(s), e2〉 = 0. Thus, ∇̂γ ′(s) γ ′(s) has
only components in the direction of γ ′(s), that is, the curves γ (s) are reparameterizations of
geodesics in M2

k . Since 〈γ ′(s), e2〉 = 0, they are orthogonal to the trajectories of e2 in M2
k ,

as we claimed.
For the case where k > 0, the trajectories of e2 in the 2-sphere M2

k = S2
k are geodesic

circles with constant geodesic curvatures kg ≥ 0. Fix one of these curves, say C . Since the
trajectories of the projections of e1 onto S2

k are geodesics normal to C , they all meet at one
point p0 ∈ S2

k . It follows that the other trajectories of e2 are geodesic circles with center p0 .
Thus, Σ is invariant under a one-parameter group of isometries that fix an axis �0 which is
parallel to ξ and passes through p0 .

In the case that k < 0, that is, when M2
k is the hyperbolic plane H

2
k , the trajectories of e2

in H
2
k are curves with constant geodesic curvatures kg . Thus, they are either geodesic circles

(if k2
g > −k), horocycles (if k2

g = α2
22

sin2 θ
= −k) or hypercycles (if k2

g < −k). In the case of

circles and horocycles, we can proceed as in the case k > 0. One fixes one such curve, say
C . Since the projections by π of the integral curves of e1 onto H

2
k are geodesics of H

2
k that

are perpendicular to the fixed curve C , all such geodesics meet in a common point p0 that
belongs to H

k
2 in the case C is a circle, or to the boundary ∂H

2
l in case C is a horocycle. It

follows that all the other trajectories of e2 are circles with center p0 if p0 ∈ H
2
k or horocycles

passing through p0 if p0 ∈ ∂H
2
k . Thus, Σ is foliated either by circles or by horocycles; in

addition, Σ is invariant under a one-parameter group of isometries that fix an axis �0 which
is parallel to ξ and passes through p0 .

Finally, we come to the case of the hypercycles. In this case, it is convenient to use more
explicitly the model of the upper half plane for H

2
k . So, let

R
2+ =

{
(x, y) ∈ R

2; y > 0

}
, ∂R

2+ =
{
(x, y) ∈ R

2; y = 0

}

denote the model of the hyperbolic space and its boundary.
In this model, fix a trajectory γ0 of the projection of e1 onto R

2+ . Being a geodesic, γ0 can
be chosen as the intersection of R

2+ with an euclidean semi-circle with center p0 ∈ ∂R
2+ .

This geodesic must meet orthogonally all the trajectories of e2 , and such trajectories, having
constant geodesic curvatures, are equidistant curves from a fixed geodesic γ which meets γ0

orthogonally. Furthermore, γ meets ∂R
2+ precisely at the point p0 and at some other point

that we denote by q0 . Thus, all the trajectories of e2 (curves equidistant from γ ) pass through
p0 and q0 , meet orthogonally γ0 and, by construction, also meet orthogonally all the other
geodesics that are normal to γ .
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It follows that Σ is invariant under a one-parameter group of isometries G. The projections
of the isometries of G onto H

2
k are the isometries of H

2
k that fix two points in the boundary

of H
2
k (the so-called hyperbolic isometries of H

2
k) and leave invariant the geodesic γ (in the

sense that of g ∈ G, g(γ ) = γ ) that joins these two points.
This concludes the case of hypercycles, hence the proof of Theorem 1. �


5 The Abresch–Rosenberg surfaces

As we mentioned before, these are the surfaces in M2
k × R for which the (2, 0)-part of the

quadratic form

Q̃(X, Y ) = 2H α(X, Y ) − k〈ξ, X〉〈ξ, Y 〉,
namely

Q dz2 = {
(Q̃(e1, e1) − Q̃(e2, e2)) − 2i Q̃(e1, e2)

}
dz2,

vanishes identically. They satisfy Eq. (3) in Sect. 2, so they are included in the surfaces with
α12 = 0. From Eq. (3), and the fact that 2H = α11 + α22 , one obtains that

α11 = H + k sin2 θ

4H
, α22 = H − k sin2 θ

4H
(13)

It follows that the extrinsic curvature Ke of an Abresch-Rosenberg surface is

Ke = α11 α22 = (16 H4 − k2 sin4 θ)
/

16 H2.

We will distinguish two cases in the classification of the Abresch-Rosenberg surfaces.

(A) 4H2 + k sin2 θ > 0. This only makes sense if k < 0; otherwise, it always holds.
In case (A) with k < 0, we have that

16 H4 − k2 sin4 θ > 0 ⇒ Ke > 0.

(B) 4H2 + k sin2 θ ≤ 0. Again, this requires k < 0; otherwise, it is never true.
In case (B), with k < 0, we have

16 H2 − k2 sin4 θ ≤ 0 ⇒ Ke ≤ 0.

Let us consider each case separately:

CASE A By a theorem of Espinar–Rosenberg [4], Ke > 0 implies that Σ is convex. Assume
first that Σ is compact. Then, it is foliated by circles and meets the rotation axis;
otherwise, it would have points of non-convexity. By compactness, it meets the
axis twice, and by convexity, it is embedded and homeomorphic to a sphere. In
the notation of [1], it is SH , of a surface of spherical type.
Assume now that Σ is a complete, non-compact surface. By the theorem of
Espinar–Rosenberg, it is the graph of a convex function over a slice. In the notation
of [1], it is DH , of a surface of disk-type.

CASE B In this case, Ke ≤ 0. Notice that, since k < 0, α22 > 0 and α11 ≤ 0 by (13).

We first consider the case where α11 < 0. Then, Ke < 0. Thus, Σ is a complete saddle
surface that looks like a catenoid. In the notation of [1], it is CH , or a catenoid-type surface.
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We now consider the case where α11 ≡ 0. We claim that, in this case,

k2
g = −k. (14)

Let us prove (14) using the value of α22 in (13).

k2
g = α2

22

/
sin2 θ =

(
H

sin θ
− k sin θ

4H

)2

= H2

sin2 θ
+ k2 sin2 θ

16 H2 − 2H k sin θ

4H sin θ

Thus,

k2
g + k = H2

sin2 θ
+ k2 sin2 θ

16 H2 − k

2
+ k.

But, from

α11 = 0 = 4 H2 + k sin2 θ

4 H

we have that 4 H2 = −k sin2 θ , hence

k2
g + k = −k

4
− k

4
+ k

2
= 0,

as we claimed.
It follows that Σ is foliated by horocycles. In the notation of [1], it is PH .
Notice that, by analyticity and (13), if Ke ≤ 0, we have that either α11 ≡ 0 or α11 < 0

everywhere in Σ . So, these two situations exhaust case B.

6 Proofs of the Corollaries

Proof of Corollary 1 Let the unit vector of the coordinate axis 0z or any other choice of axis
be denoted by ξ . The notation has been chosen so that by setting e1 to be the unit vector
of the projection of ξ onto T Σ , we have again that ξ = sin θ e1 + cos θ e3 . By setting
e2 ⊥ [e1, e2], we obtain that {e1, e2} is a canonical frame on Σ in which the Gauss formula
reads

K = −|dθ |2 + 2H dθ(e1). (8′′)

We recall that (8′′) holds on Σ except at a closed set F ⊂ Σ with no interior points (sin θ = 0
in F).

Proceeding as in the proof of Theorem 1, we obtain from (8′′) that

− |dθ |2 − 2H |dθ | ≤ K ≤ −|dθ |2 + 2H |dθ | (9′)

and that equality holds if and only if e1 = ± grad θ

|grad θ | what implies that α12 = 0. From that

point on, the proof is the same as in Theorem 1, and Σ turns out to be a rotation surface with
constant mean curvature in R

3. Being compact, it is the canonical sphere. �

Proof of Corollary 2 It is obvious that equality in the right-hand side of (9′) implies that

∫

Σ

K dσ =
∫

σ

(−|dθ |2 + 2H |dθ |)σ,
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where dσ is the element of area of Σ (notice that in the present situation k = 0). For the
converse, we observe that if, at some point p ∈ Σ , we had

K < −|dθ |2 + 2H |dθ | (15)

this would be so in a neighborhood U of p. Since, we always have in Σ that

K ≤ −|dθ |2 + 2H |dθ |;
Equation (15) in U would contradict the above integral, thus proving the converse, hence the
equivalence of the above integral and the right-hand side of (9′). A similar argument applies
to the left hand side.

Since
∫
Σ

K dσ = 2π χ(Σ), we can continue as in Corollary 1. �

Proof of Corollary 3 The proof is similar to the proof of Theorem 1. The only possible new
point is that the trajectories of e2 can have curvature zero. This cannot occur.

To see that, notice that, since Σ is complete, the above e2-trajectories are straight lines.
On the other hand, the projection onto the plane P orthogonal to ξ of the e1-trajectories are
geodesics in P , hence straight lines. Fix one of these lines, say r , in P . The projection onto P
of some e2-trajectory is orthogonal to r . Since the same is true for all such projections, they
are all parallel straight lines in P . Thus, the e2-trajectories themselves are parallel straight
lines in R

3. This implies that Σ is a plane, a contradiction, since we have assumed that
H 	= 0.

It follows that the trajectories of e2 are circles, and the rest of the proof is as in Theorem
1. �

Proof of Corollary 4 By Gauss geodesic triangle theorem, π − ∑3

i=1 βi = ∫
R K dσ , where

R is the region bounded by T . Thus, we obtain
∫

R

(−|dθ |2 + k cos2 θ − 2H |dθ |) dσ ≤
∫

R

K dσ

≤
∫

R

(−|dθ |2 + k cos2 θ + 2H |dθ |) dσ

Now, with an argument similar to that of Corollary 2, we obtain that the inequalities in (9)
are equivalent to the above integral inequalities provided we are in an open set if Σ , namely,
the interior of the region R. By analyticity, (9) holds everywhere in Σ . The conclusions of
Theorem 1 follow. �
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