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Abstract. We consider the integrals of the r-mean curvatures
Sr of a complete hypersurface M in the space form Qn+1

c . Among

other results, we prove that
∫

M
Sr dM = ∞ for a complete prop-

erly immersed hypersurfaces in a space form with Sr ≥ 0, Sr �≡ 0
and Sr+1 ≡ 0 for some r ≤ n − 1.

1. Introduction

Let Mn be a complete orientable hypersurface immersed in the space form
Qn+1

c of constant sectional curvature c. We denote by A and λ1, . . . , λn the
second fundamental operator and the eigenvalues of A, respectively. It is well
known that the r-mean curvature at a point p is defined by

Hr(p) =
1(
n
r

) ∑
i1<···<ir

λi1 · · · λir =
1(
n
r

)Sr(p),

where Sr is the r-symmetric function of λ1, . . . , λn, for 1 ≤ r ≤ n, and H0 is
defined to be zero and Hr = 0, for all r ≥ n + 1. In particular, for r = 1,
H1 = H is the mean curvature.

We define the r-area of a domain D ⊂ M by

Ar(D) =
∫

D

Sr(p)dM.

Then, when r = 0, A0 is the volume of D.
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In this paper, we are interested in r-areas estimates. When r = 0, it is well
known that a complete properly immersed minimal hypersurface in R

n+1 has,
at least, polynomial volume growth. In fact, infinity volume results hold for
more general ambient spaces. Precisely, we have the following result of K.
Frensel [9].

Theorem ([9], Theorem 1). Let Mm be a complete, noncompact manifold
and let x : Mm → Nn be an isometric immersion with mean curvature vector
field bounded in norm. If Nn has sectional curvature bounded from above and
injective radius bounded from below by a positive constant, then the volume of
Mm is infinite.

It is also true that each end of M has infinite volume under the same
conditions (see [4]). These estimates have been used in studying the topology
and geometric properties of minimal hypersurfaces and hypersurfaces with
constant mean curvature (see for example [4], [9], [7]). It is natural to ask the
following.

Question. Let Mn be a complete noncompact manifold and let x : Mn →
Nn+1 be an isometric immersion such that there is a positive constant C
satisfying

|Sr+1| ≤ CSr

for some r = 0,1, . . . , n − 1. Is the r-area of Mn infinite?

When r = n, Sr+1 = 0, one can find a negative answer to this question. For
example, if M is a complete noncompact surface in R

3 with positive Gaussian
curvature, then the total curvature is finite by a theorem of Cohn-Vossen.
When r < n we obtain a r-area estimate and give positive answers to this
question in some interesting cases.

In order to state our results we need the rth Newton transformation,
Pr : TpM → TpM , which is defined inductively by

P0 = I,

Pr = SrI − A ◦ Pr−1, r > 1.

Theorem A (Theorem 2.8). Let Qn+1
c be a Riemannian manifold with

constant sectional curvature c and let Mn be a complete noncompact prop-
erly immersed hypersurface of Qn+1

c . Assume that there exists a nonnegative
constant α such that

(r + 1)|Sr+1| ≤ (n − r)αSr

for some r ≤ n − 1. If Pr is positive semidefinite, then for any q ∈ M such
that Sr(q) �= 0 and any μ0 > 0 there exists a positive constant C depending on
μ0, q and M such that for every μ > μ0,

Ar

(
Bμ(q) ∩ M

)
=

∫
Bμ(q)∩M

Sr dM ≥
∫ μ

μ0

Ce−ατ dτ,
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where Bμ(q) is the ball of radius μ and center q in Qn+1
c . For the case c > 0,

we assume μ ≤ π
2

√
c
.

As a consequence of this result we obtain the following.

Theorem B (Corollary 2.9). Let Qn+1
c be a Riemannian manifold with

constant sectional curvature c ≤ 0 and let Mn be a complete noncompact
properly immersed hypersurface of Qn+1

c . Assume that Sr ≥ 0, Sr �≡ 0 and
Sr+1 ≡ 0 for some r ≤ n − 1. Then

∫
M

Sr dM = ∞.

Remark 1.1. The cases when r is even and r is odd are different. If r is
odd and Sr ≤ 0, we can change the orientation so that Sr ≥ 0. But when r
is even, Sr is independent of the choice of orientation. It has been proved by
Gromov and Lawson that the existence of a complete metric with nonpositive
scalar curvature (r = 2) implies some topological obstructions, which is called
enlargeable (see Corollary A in [11]). Enlargeable manifolds cannot carry
metrics of positive scalar curvature.

Topping [18] used Sobolev inequality to get a diameter estimate in terms of
the mean curvature integral. In Section 4, using his estimate we get a global
estimate of the mean curvature integral.

Theorem C (Theorem 4.1). Let Mm be an m-dimensional complete non-
compact Riemannian manifold isometrically immersed in R

n. Then there ex-
ists a positive constant δ depending on m such that if

lim sup
r→+∞

V (x, r)
rm

< δ,

where V (x, r) denotes the volume of the geodesic ball Br(x), then

lim sup
R→+∞

∫
BR(x)

|H|m−1 dM

R
> 0.

In particular,
∫

M
|H|m−1 dM = +∞.

For a complete noncompact surface M with finite total curvature, Cohn-
Vossen theorem says that (see Theorem 6 in [6])∫

M

K dM ≤ 2πχ(M).

A special case of Corollary 4.3 says that if
∫

M
K dM = 2πχ(M), then∫

M
|H| dM = +∞.
The rest of the paper is organized as follows. In Section 2, we obtain

the formulas relating the distance function and the r-mean curvature. The
estimate obtained in Section 2 can be improved when r = 0 and this is proved
in Section 3. In Section 4, we give the proof of Theorem C.
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2. r-area estimate

Let x : Mn → Nn+1 be an isometric immersion of a Riemannian manifold
M into a Riemannian manifold N .

In [15], Reilly showed that Pr satisfies the following

Proposition 2.1 ([15], p. 224, see also [2], Lemma 2.1). Let x : Mn →
Nn+1 be an isometric immersion between two Riemannian manifolds and let
A be the second fundamental form of x. The rth Newton transformation Pr

associated to A satisfies:

trace(Pr) = (n − r)Sr,(2.1)
trace(A ◦ Pr) = (r + 1)Sr+1.(2.2)

For hypersurfaces with bounded mean curvature, the Laplacian of the in-
trinsic distance to a fixed point of M played an important role in the proof of
Frensel’s estimate of the volume of M . In the case of Hr bounded, with r > 1,
we used another second order differential operator defined on M , which seems
to be natural for this problem. Associated to each Newton transformation Pr,
if f : M → R is a smooth function, we define

Lr(f) = trace(Pr ◦ Hessf).

These operators are, in a certain sense, generalizations of the Laplace op-
erator since L0(f) = trace(Hessf) = Δf . They were introduced by Voss [19]
in connection with variational arguments. In general, these operators are
not elliptic and some conditions are necessary to ensure the ellipticity. For
completeness, we include here some useful facts.

Proposition 2.2 ([8], Lemma 3.10). Let Nn+1 be an (n + 1)-dimensional
oriented Riemannian manifold and let Mn be a connected n-dimensional ori-
entable Riemannian manifold. Suppose x : M → N is an isometric immer-
sion. If H2 > 0, then the operator L1 is elliptic.

Proposition 2.3 ([5], Proposition 3.2). Let Nn+1 be an (n+1)-dimensional
oriented Riemannian manifold and let Mn be a connected n-dimensional ori-
entable Riemannian manifold (with or without boundary). Suppose x : M → N
is an isometric immersion with Hr > 0 for some 1 ≤ r ≤ n. If there exists an
interior point p of M such that all the principal curvatures at p are non-
negative, then for all 1 ≤ j ≤ r − 1, the operator Lj is elliptic, and the j-mean
curvature Hj is positive.

We need the following proposition which is essentially the content of Lem-
ma 1.1 and equation (1.3) of [12]. We include here with a direct proof.

Proposition 2.4. Let Mn → Nn+1 be an isometric immersion. Suppose
that Sr+1(p) = 0, for some r, 0 ≤ r < n. Then Pr is semidefinite at p.
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Proof. Consider Sr = Sr(λ1, . . . , λn). Then ∂Sr

∂λi
are the eigenvalues of Pr.

Let (λ0
1, . . . , λ

0
n) be the principal curvatures of M at p. Hence

Sr+1

(
λ0

1, . . . , λ
0
n

)
= 0.

We choose ε = minλ0
i �=0{1, |λ0

i | }. Then, for all (ε1, . . . , εn) with εi ∈ (0, ε),
Sr+1(λ0

1 +ε1, . . . , λ
0
n + εn) does not change sign. This implies that ∂Sr

∂λi
≥ 0 for

all i = 1, . . . , n or ∂Sr

∂λi
≤ 0 for all i = 1, . . . , n. Thus Pr is semidefinite at p. �

Let Mn and Nn+1 be Riemannian manifolds and let x : Mn → Nn+1 be an
isometric immersion. Henceforth, we shall tacitly make the usual identification
of X ∈ TpM with dxp(X). In particular, if F : N → R is smooth and we
consider the composition f = F ◦ x, then we have at p ∈ M , for every X ∈
TpM :

〈gradM f,X〉 = df(X) = dF (X) = 〈gradN F,X〉,
where gradM and gradN denote the gradient on M and the gradient on N ,
respectively. So that

(2.3) gradN F = gradM f + (gradN F )⊥,

where (gradF )⊥ is perpendicular to TpM . Let F : N → R be a C2 function
and denote f : M → R the function induced by F by restriction, that is f =
F ◦ x. We have the following.

Lemma 2.5. Let x : Mn → Nn+1 be an isometric immersion. Let F : N →
R a smooth function and consider f = F ◦ x : M → R. For an orthonormal
frame {ei} on M , we have

(2.4) Lrf =
n∑

i=1

HessN (F )
(
ei, Pr(ei)

)
+ (r + 1)Sr+1〈gradN F,η〉,

where η denotes the normal vector field of the immersion and gradN is the
gradient of N .

Proof. Let ∇ and ∇ be the connections of M and N , respectively. If α
denotes the second fundamental form of the immersion, Gauss’ equation and
equations (2.2) and (2.3) imply that

Lrf =
n∑

i=1

〈
∇ei(gradM f), Pr(ei)

〉

=
n∑

i=1

〈
∇ei(gradM f) −

[
∇ei(gradM f) − ∇ei(gradM f)

]
, Pr(ei)

〉

=
n∑

i=1

〈
∇ei(gradM f) − α(ei,gradM f), Pr(ei)

〉
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=
n∑

i=1

〈
∇ei(gradM f), Pr(ei)

〉

=
n∑

i=1

〈
∇ei

(
gradN F − (gradN F )⊥)

, Pr(ei)
〉

=
n∑

i=1

〈
∇ei gradN F,Pr(ei)

〉
−

n∑
i=1

〈
∇ei(gradN F )⊥, Pr(ei)

〉

=
n∑

i=1

HessN (F )
(
ei, Pr(ei)

)
−

n∑
i=1

〈
∇ei

(
〈gradN F,η〉η

)
, Pr(ei)

〉

=
n∑

i=1

HessN (F )
(
ei, Pr(ei)

)
−

n∑
i=1

〈
〈gradN F,η〉∇eiη,Pr(ei)

〉

=
n∑

i=1

HessN (F )
(
ei, Pr(ei)

)
− 〈gradN F,η〉

n∑
i=1

〈
−A(ei), Pr(ei)

〉

=
n∑

i=1

HessN (F )
(
ei, Pr(ei)

)
+ 〈gradN F,η〉

n∑
i=1

〈
ei,APr(ei)

〉

=
n∑

i=1

HessN (F )
(
ei, Pr(ei)

)
+ 〈gradN F,η〉 trace(APr)

=
n∑

i=1

HessN (F )
(
ei, Pr(ei)

)
+ (r + 1)Sr+1〈gradN F,η〉.

�

Let c ∈ R. Define the function:

θc(t) :=
∫ t

0

sc(u)du,

where

(2.5) sc(t) =

⎧⎪⎪⎨
⎪⎪⎩

sin
√

ct√
c

, if c > 0;

t, if c = 0;
sinh

√
|c|t√

|c|
, if c < 0.

Let ρ denotes the distance function to the point Q in Nn+1, and F : Nn+1 → R

given by F (p) = θc(ρ(p)). In this case, Lemma 2.5 with f = F ◦ x and F = θc ◦ ρ
implies the following corollary.

Corollary 2.6. Let Qn+1
c be a Riemannian manifold with constant sec-

tional curvature c. Let M be an immersed hypersurface in Qn+1
c . Then, for
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all p ∈ M ,

Lr

(
θc

(
ρ(p)

))
(2.6)

= (n − r)s′
c

(
ρ(p)

)
Sr(p) + (r + 1)Sr+1(p)sc

(
ρ(p)

)〈
gradQn+1

c
ρ(p), η

〉
.

In particular, when c = 0,

1
2
Lr

(
ρ2(p)

)
= (n − r)Sr(p) + (r + 1)Sr+1(p)ρ(p)

〈
gradQn+1

c
ρ(p), η

〉
.

Proof. First observe that

(2.7) HessQn+1
c

F (X,Y ) = s′
c(ρ)〈X,Y 〉,

where X,Y ∈ Tx(p)Qn+1
c . In fact,

HessQn+1
c

F (X,Y ) = HessQn+1
c

(
θc(ρ)

)
=

〈
∇X gradQn+1

c

(
θc(ρ)

)
, Y

〉
=

〈
∇Xsc(ρ) gradQn+1

c
ρ,Y

〉
= sc(ρ)HessQn+1

c
ρ(X,Y )

+ s′
c(ρ)

〈
〈gradQn+1

c
ρ,X〉 gradQn+1

c
ρ,Y

〉
.

On the other hand, see [1], p. 6,

HessQn+1
c

ρ(X,Y ) = 〈∇X gradQn+1
c

ρ,Y 〉

=
s′

c(ρ)
sc(ρ)

[
〈X,Y 〉 − 〈gradQn+1

c
ρ,X〉 〈gradQn+1

c
ρ,Y 〉

]
.

This concludes the proof of (2.7). Now, by using equation (2.4), we have

Lrf =
n∑

i=1

s′
c(ρ)

〈
ei, Pr(ei)

〉
+ (r + 1)Sr+1

〈
gradQn+1

c
(θc ◦ ρ), η

〉
= s′

c(ρ) tracePr + (r + 1)Sr+1sc(ρ)〈gradQn+1
c

ρ, η〉.

Finally, by using equation (2.1), we conclude the proof of equation (2.6). The
case c = 0 follows immediately. �

It follows from Codazzi equation (see Rosenberg [16], p. 225) that Lr is a
divergent form operator, that is,

Lr(f) = divM (Pr ∇f)

for all smooth functions f : M → R. Denote by Br(Q) the geodesic ball of
Qn+1

c with radius r centered at Q ∈ Qn+1
c , and by Br(Q) its closure. We will

use the following proposition.

Proposition 2.7. Let Qn+1
c be a Riemannian manifold with constant sec-

tional curvature c and let x : Mn → Qn+1
c be an isometric immersion. For
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Q ∈ Qn+1
c , we denote by ρ(x) the distance to the point Q ∈ Qn+1

c and ρ(x(p)),
p ∈ M , its restriction to M . If for some r ≤ n − 1, Sr ≥ 0, then∫

∂D

sc

(
ρ(q)

)〈
Pr

(
gradM ρ(q)

)
, ν

〉
dA(2.8)

≥ (n − r)
∫

D

(
s′

c

(
ρ(q)

)
Sr(p) − r + 1

n − r

∣∣Sr+1(p)
∣∣sc

(
ρ(q)

))
dM,

where q = x(p), D ⊂ M is a bounded domain with nonempty boundary ∂D
and ν is the conormal vector along ∂D. In the case c > 0, we assume that
D ⊂ B π

2
√

c
(Q).

Proof. Since | gradQn+1
c

ρ(x(p))| ≤ 1 and s′
c(ρ(x(p))) ≥ 0, from (2.6) we have

Lr

(
θc

(
ρ(x)

))
≥ (n − r)

[
s′

c(ρ)Sr − r + 1
n − r

|Sr+1|sc(ρ)
]
.

Integrating this inequality, we get∫
D

Lr

(
θc

(
ρ(x)

))
dM(2.9)

≥ (n − r)
∫

D

[
s′

c

(
ρ(x)

)
Sr − r + 1

n − r
|Sr+1|sc

(
ρ(x)

)]
dM.

On the other hand, we have that∫
D

Lr

(
θc

(
ρ(x)

))
dM =

∫
D

divPr

(
gradM

(
θc

(
ρ
(
x(p)

))))
dM

=
∫

D

div
(
scρ

(
x(p)

)
Pr(gradQn+1

c
ρ)	)

dM

=
∫

∂D

sc

(
ρ(x)

)〈
Pr

(
(gradQn+1

c
ρ)	)

, ν
〉
dA,

where ν denotes the outward unit normal vector field on ∂D. Therefore, if
q = x(p), ∫

∂D

sc

(
ρ(q)

)〈
Pr

((
gradQn+1

c
ρ(q)

)	)
, ν

〉
dA

≥ (n − r)
∫

D

[
s′

c

(
ρ(x)

)
Sr − r + 1

n − r
|Sr+1|sc

(
ρ(x)

)]
dM,

and the proposition is proved. �

We would like to point out that the above proposition is valid for a more
general class of domains. For instance, it is valid in the setting of Gauss–Green
Theorem (see [10], p. 478). In particular, if we take D to be the intersection
of the extrinsic ball with M i.e. D = Bμ ∩ M in Proposition 2.7, we have the
following
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Theorem 2.8. Let Qn+1
c be a Riemannian manifold with constant sec-

tional curvature c and let Mn be a complete noncompact properly immersed
hypersurface of Qn+1

c . Assume that there exists a nonnegative constant α such
that

(2.10) (r + 1)|Sr+1| ≤ (n − r)αSr

for some r ≤ n − 1. If Pr is positive semidefinite, then for any q ∈ M such
that Sr(q) �= 0 and any μ0 > 0, there exists a positive constant C depending
on μ0, q and M such that for every μ > μ0,

Ar

(
Bμ(q) ∩ M

)
=

∫
Bμ(q)∩M

Sr dM ≥
∫ μ

μ0

Ce−ατ dτ,

where Bμ(q) is the ball of radius μ and center q in Qn+1
c . For the case c > 0,

we assume μ ≤ π
2

√
c
.

Proof. We use the notation introduced in Proposition 2.7. Take Dτ =
Bτ (q) ∩ M , μ ≤ 2π/

√
c, if c > 0. Since the immersion is proper, we have that

∂Dτ �= ∅, for all 0 < τ < μ. Thus, by using (2.10) in equation (2.8), we obtain
that ∫

∂Dμ

sc

(
ρ(x)

)〈
Pr(gradM ρ), ν

〉
dA(2.11)

≥ (n − r)
∫

Dμ

(
s′

c

(
ρ(x)

)
− αsc

(
ρ(x)

))
Sr dM

= (n − r)
∫ μ

0

∫
∂Dτ

s′
c(ρ(x)) − αsc(ρ(x))

sc(ρ(x))

× sc

(
ρ(x)

)
| gradM ρ| −1Sr dAdτ,

where we have used the co-area formula (see [3], p. 80). Observe that the
conormal vector ν to ∂Dτ is parallel to gradM ρ. This fact together with the
fact that Pr is positive semidefinite, imply the following:〈

Pr(gradM ρ), ν
〉

≤ trace(Pr)| gradM ρ| = (n − r)Sr | gradM ρ|.

Using the above equation and the fact that along ∂Dτ , ρ(x) = τ , we get∫
∂Dμ

sc

(
ρ(x)

)
| gradM ρ|Sr dA(2.12)

≥
∫ μ

0

s′
c(τ) − αsc(τ)

sc(τ)

∫
∂Dτ

sc

(
ρ(x)

)
| gradM ρ| −1Sr dAdτ.

Now we define

ϕ(τ) =
∫

∂Dτ

sc

(
ρ(x)

)
| gradM ρ| −1Sr dA.
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Since | gradM ρ| ≤ 1, equation (2.12) implies

ϕ(μ) ≥
∫ μ

0

s′
c(τ) − αsc(τ)

sc(τ)
ϕ(τ)dτ.

By writing

φ(μ) =
∫ μ

0

s′
c(τ) − αsc(τ)

sc(τ)
ϕ(τ)dτ,

one finds

φ′(μ) ≥ s′
c(μ) − αsc(μ)

sc(μ)
φ(μ).

Thus, by integrating from μ0 > 0 to μ, the above differential inequality arises

ln
φ(μ)
φ(μ0)

≥ ln
(

sc(μ)
sc(μ0)

)
− α(μ − ε) = ln

((
sc(μ)
sc(μ0)

)
e−α(μ−μ0)

)
.

Hence,

φ(μ) ≥ φ(μ0)
sc(μ0)

sc(μ)e−αμ.

Define

f(μ) =
∫

Dμ

Sr dM.

Again, by the co-area formula, it follows that

f(μ) =
∫ μ

0

(∫
∂Dτ

| gradM ρ| −1Sr dA

)
dτ.

Since

f ′(μ) =
∫

∂Dμ

| gradM ρ| −1Sr dA =
1

sc(μ)
ϕ(μ) ≥ φ(μ0)

sc(μ0)
e−αμ,

then for μ > μ0,

f(μ) ≥
∫ μ

μ0

φ(μ0)
sc(μ0)

e−ατ dτ. �

Corollary 2.9. Let Qn+1
c be a Riemannian manifold with constant sec-

tional curvature c ≤ 0 and let Mn be a complete noncompact properly im-
mersed hypersurface of Qn+1

c . Assume that Sr ≥ 0, Sr �≡ 0 and Sr+1 ≡ 0 for
some r ≤ n − 1. Then

∫
M

Sr dM = ∞.

Proof. Since the immersion is proper, we have ∂(M ∩ Bμ(q)) is nonempty
for all μ > μ0. By using Proposition 2.4, since Sr+1 = 0, we have that Pr is
semidefinite. Now, the condition Sr ≥ 0 implies that Pr is positive semidefi-
nite. Therefore, using Theorem 2.8, with α = 0, for all μ > μ0,∫

Bμ ∩M

Sr dM ≥
∫ μ

μ0

Ce−ατ dτ = C(μ − μ0).
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Then ∫
M

Sr dM = ∞. �

Remark 2.10. When r is odd, the condition Sr ≥ 0 can be obtained by
choosing the right orientation.

The condition of semi-positiveness of P2 is satisfied when M is a hypersur-
face immersed in R

n+1 with S3 = 0 (which is called 2-minimal) and S2 > 0.
In fact, in this case P2 is positive definite, since L2 is elliptic (see Proposi-
tion 2.2). So we have

Corollary 2.11. Let Mn be a complete 2-minimal noncompact properly
immersed hypersurface of R

n+1 with nonnegative scalar curvature. Then ei-
ther the scalar curvature is zero or the total scalar curvature is infinite.

Remark 2.12. When n = 3 the corollary can be proved by using Theo-
rem III in [13] without the assumption that the immersion is proper. In this
case, Mn has to be a cylinder and the conclusion of the above corollary follows
immediately.

Remark 2.13. The condition of semi-positiveness of Pr is also satisfied
when M is a hypersurface in R

n+1 with nonnegative sectional or positive
Ricci curvature, RicM > 0. Indeed when RicM > 0, for each point in M , the
principal curvatures can be arranged as λ1 ≤ λ2 ≤ · · · ≤ λi < 0 < λi+1 ≤ · · · ≤
λn. The positivity of the Ricci curvature implies

RicM (ej) = λj

(∑
k �=j

λk

)
> 0 ∀j = 1, . . . , n.

If i ∈ {1, . . . , n − 1}, it follows from the above equation that

(2.13)
∑
k �=j

λk < 0, when j ≤ i,

and

(2.14)
∑
k �=j

λk > 0, when j > i.

From (2.13), we have for j1 ≤ i,

∑
k �=j1

λk =

(
i∑

k=1

λk − λj1

)
+

n∑
k=i+1

λk < 0.

Thus

−
i∑

k=1

λk >

i∑
k=1

λk + λj1 >

n∑
k=i+1

λk.
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On the other hand, using (2.14), for j2 > i, we find

∑
k �=j2

λk =

(
i∑

k=1

λk − λj2

)
+

n∑
k=i+1

λk > 0,

hence

−
i∑

k=1

λk <

i∑
k=1

λk + λj1 <

n∑
k=i+1

λk,

which is a contradiction. Thus, all λi has the same sign (we are indebted to F.
Fontenele for this observation). So we can choose an orientation such that Pr

is positive definite and Sr > 0.

Thus we have the following consequence.

Corollary 2.14. Let Mn be a complete noncompact properly immersed
hypersurface of R

n+1 with positive Ricci curvature. Assume that there exists
a positive constant α such that

(r + 1)|Sr+1| ≤ (n − r)αSr

for some r ≤ n − 1. Then, for any q ∈ M and any μ0 > 0, there exists a
positive constant C depending on μ0, Q and M such that∫

Bμ(q)∩M

Sr dM ≥
∫ μ

μ0

Ce−ατ dτ,

where Bμ(q) is the geodesic ball in R
n+1 centered at q.

The following is a direct consequence of Theorem 2.8 and Proposition 2.3.

Corollary 2.15. Let Mn be a complete noncompact properly immersed
hypersurface of Qn+1

c . Assume that Sr is positive and there exists a positive
constant α such that

(r + 1)|Sr+1| ≤ (n − r)αSr

for some r ≤ n − 1. If there exists a point such that all principal curvatures
are nonnegative, then, for any q ∈ M and any μ0 > 0, there exists a positive
constant C depending on μ0, q and M such that∫

Bμ(q)∩M

Sr dM ≥
∫ μ

μ0

Ce−ατ dτ,

where Bμ(q) is the geodesic ball in Qn+1
c centered at q. For the case c > 0, we

assume μ ≤ π
2

√
c
.
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3. Volume estimates in general manifolds

In this section we consider Nn+p a Riemannian manifold with sectional
curvature bounded from above by a constant c. Let Mn be a submanifold
isometrically immersed in N = Nn+p.

Let F : N → R be a C2 function and denote f : M → R the function in-
duced by F by restriction. Essentially, following the steps involved in the
proof of Lemma 2.5, we obtain

Δf =
n∑

i=1

HessN F (ei, ei) + n〈gradN F,H〉,

where {e1, e2, . . . , en} is an orthonormal frame along M and H is the mean
curvature vector. Similar to Proposition 2.7, we have

Proposition 3.1. Let N be a Riemannian manifold with sectional curva-
ture bounded from above by a constant c and Mn an immersed connected sub-
manifold of N . We denote by ρ(x) the distance in N between x and Q ∈ Nn+p

and ρ(x) the induced function of ρ by restriction. Then

(3.1)
∫

∂D

sc

(
ρ(x)

)
〈gradM ρ, ν〉 dA ≥ n

∫
D

(
s′

c

(
ρ(x)

)
− |H|sc

(
ρ(x)

))
dM,

where q = x(p), D ⊂ M is a bounded domain with nonempty boundary ∂D
and D ∩ CN (Q) = ∅, where CN (Q) is the cut locus of the point Q in N , and
ν is the conormal vector along ∂D.

Proof. Let V = sc(ρ) gradN ρ and V 	 the orthogonal projection of V into
the tangent space of M . Then we have V 	 = sc(ρ) gradM ρ, where ρ(x) is the
induced function of ρ to M by restriction. Thus, Lemma 2.5 of [14], p. 713,
implies, when ρ < injN (Q),

(3.2) HessN F (X,X) ≥ s′
c(ρ)〈X,X〉.

Then
〈 ∇eiV, ei〉 ≥ s′

c(ρ)

for all ρ when c ≤ 0, and ρ ≤ π√
c
, when c > 0. We find that

Δ
(
θc

(
ρ(x)

))
≥ n

[
s′

c(ρ) − sc(ρ)|H|
]
.

Integrating this inequality and applying Stokes’ formula, we get∫
∂D

sc

〈
(gradN ρ)	, ν

〉
dA ≥ n

∫
D

[
s′

c

(
ρ(x)

)
− sc

(
ρ(x)

)
|H|

]
dM,

and the proposition follows. �

Similar to Proposition 2.7, the above result is valid in a more general set-
ting, such as extrinsic geodesic balls. Using this fact, we arrive at
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Theorem 3.2. Let M be a Riemannian manifold isometrically immersed
in a geodesic ball B(O,ρ0) ⊂ Nn+p with codimension p. Assume that the
sectional curvature of N in B(O,ρ0) is bounded from above by c and moreover
that there exists a positive constant α such that

|H| ≤ α.

Then

vol
(
Bμ(q)

)
≥ nωn

∫ μ

0

sc(t)n−1e−nαs dt,

where ωn is the volume of the unit ball in R
n and Bμ(q) is the intrinsic

geodesic ball in M with center q ∈ M and radius μ < injN (q).

Proof. By taking D = Bτ (q) in Proposition 3.1, we obtain

〈gradM ρ, ν〉 ≤ | gradM ρ|.
Thus, ∫

∂Bτ (q)

sc(ρ(x))
n

| gradM ρ| dA(3.3)

≥
∫

Bτ (q)

(
s′

c

(
ρ(x)

)
− αsc

(
ρ(x)

))
dM

=
∫ μ

0

∫
∂Bτ (q)

s′
c(ρ(x)) − αsc(ρ(x))

sc(ρ(x))
sc

(
ρ(x)

)
| gradM ρ| −1 dAdτ,

where we have used the co-area formula (see [3], p. 80). Since the intrinsic
distance is not less than the extrinsic one and(

s′
c

sc

)′
≤ 0,

then
1
n

∫
∂Bμ(q)

sc

(
ρ(x)

)
| gradM ρ| dA(3.4)

≥
∫ μ

0

s′
c(τ) − αsc(τ)

sc(τ)

∫
∂Bτ (q)

sc

(
ρ(x)

)
| gradM ρ| −1 dAdτ.

Now we define

ϕ(τ) =
∫

∂Bτ (q)

sc

(
ρ(x)

)
| gradM ρ| −1 dA.

Equation (3.4) implies that

1
n

ϕ(μ) ≥
∫ μ

0

s′
c(τ) − αsc(τ)

sc(τ)
ϕ(τ)dτ.

By writing

φ(μ) =
∫ μ

0

s′
c(τ) − αsc(τ)

sc(τ)
ϕ(τ)dτ,
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we have

φ′(μ) ≥ n(s′
c(μ) − αsc(μ))

sc(μ)
φ(μ).

Thus, by integrating from ε > 0 to μ, with μ ≤ min{injN (q), π
2

√
c

} when c > 0,
the above differential inequality arises

1
n

ln
φ(μ)
φ(ε)

≥ ln
(

sc(μ)
ε

)
− α(μ − ε) = ln

[(
sc(μ)

ε

)
e−α(μ−ε)

]
.

Hence,

(3.5)
φ(μ)
φ(ε)

≥
[(

sc(μ)
ε

)
e−α(μ−ε)

]n

.

Observe that by the mean value theorem,

lim
ε→0

φ(ε)
εn

= ωn.

Then
φ(μ) ≥ ωnsc(μ)ne−nαμ.

Now, define

f(μ) =
∫

Bμ(q)

dM = vol
(
Bμ(q)

)
.

Again, by the co-area formula, we can write f(μ) as

f(μ) =
∫ μ

0

(∫
∂Bτ (q)

| gradM ρ| −1 dA

)
dτ.

Hence

f ′(μ) =
∫

∂Bμ(q)

| gradM ρ| −1 dA.

This equality together with | gradM ρ| ≤ 1, and equation (3.3) imply that

sc(μ)
n

f ′(μ) ≥
∫

∂Bμ(q)

sc(ρ(x))
n

| gradM ρ| dA ≥
∫ μ

0

(
s′

c(τ) − αsc(τ)
)
f ′(τ)dτ.

Since

f ′(μ) ≥ ϕ(μ)
sc(μ)

,

then

f(μ) ≥
∫ μ

0

ωnnsc(τ)n−1e−nατ dτ,

which concludes the proof. �

The following corollary follows immediately.
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Corollary 3.3. (i) Let Mn be an immersed minimal hypersurface of the
Euclidean space R

n+p. Then

vol
(
Bμ(q)

)
≥ ωnμn,

where ωn is the volume of the unit ball in R
n and Bμ(q) is the intrinsic

geodesic ball in M centered at q ∈ M .
(ii) Let Mn be an immersed hypersurface of the hyperbolic space H

n+p(−1).
Assume that there exists a positive constant α such that

|H| ≤ α <
n − 1

n
.

Then, there exists a constant C > 0 so that, for μ ≥ 1,

vol
(
Bμ(q)

)
≥ Ce(n−1−nα)μ,

where Bμ(q) is the intrinsic geodesic ball in M with center q ∈ M .

4. Mean curvature integral

In this section, inspired by a recent work of Topping [18], we prove a type
of mean curvature integral estimate for complete submanifold in a Euclidean
space R

n and we apply it to surfaces in R
n.

Theorem 4.1. Let Mm be a m-dimensional complete noncompact Rie-
mannian manifold isometrically immersed in R

n. Then there exists a positive
constant δ depending on m such that if

(4.1) lim sup
r→+∞

V (x, r)
rm

< δ,

where V (x, r) denotes the volume of the geodesic ball Br(x), then

(4.2) lim sup
R→+∞

∫
BR(x)

|H|m−1 dM

R
> 0.

In particular,
∫

M
|H|m−1 dM = +∞.

We need the following lemma of Topping [18].

Lemma 4.2 ([18], Lemma 1.2). Let Mm be a m-dimensional complete Rie-
mannian manifold isometrically immersed in R

n. Then a positive constant δ
depending on m exists, such that for any x ∈ M and R > 0, at least one of the
following statements is true:

(i) supr∈(0,R] r
− 1

m−1 [V (x, r)]− m−2
m−1

∫
B(x,r)

|H|m−1 dM > δ,

(ii) infr∈(0,R]
V (x,r)

rm > δ.
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Proof of Theorem 4.1. We can choose L large enough so that V (z,L) ≤
δLm for all z ∈ M . Then, from Lemma 4.2, we have

sup
r∈(0,L]

r− 1
m−1

[
V (z, r)

]− m−2
m−1

∫
Br(z)

|H|m−1 dM > δ.

Since ∫
Br(z)

|H| dM ≤
(∫

Br(z)

|H|m−1 dM

) 1
m−1

·
(
V (z, r)

)m−2
m−1

for any z ∈ M , there exists a r(z) ∈ (0,R] such that∫
Br(z)

|H|m−1 dM > δm−1r(z).

Fix a point o ∈ M , and let γ : [0,+∞) → M be a ray parametrized by an
arclength with γ(0) = o. For any fixed R > 0,

γ
(
[0,R]

)
⊂

⋃
t∈[0,R]

Br(γ(t))

(
γ(t)

)
.

From a covering argument used in Theorem 1.1 of [18], we can find an at most
countable sequence t1, t2, . . . , tq, . . . ∈ [0,R] such that

∑
i r(γ(ti)) ≥ 1

4R. Thus,
when i �= j,

Br(γ(ti))

(
γ(ti)

)
∩ Br(γ(tj))

(
γ(tj)

)
= ∅.

Then ∫
B2R(o)

|H|m−1 dM ≥
∑

i

∫
Br(γ(ti))(γ(ti))

|H|m−1 dM

≥ δm−1
∑

i

r
(
γ(ti)

)

≥ δm−1 1
4
R.

And the result is proved. �

For complete surfaces in R
n that satisfy the Gauss–Bonnet relation, we

obtain the following result.

Corollary 4.3. Let δ be as in Theorem 4.1. If M is a complete noncom-
pact surface in R

n satisfying

(4.3) 2πχ(M) −
∫

M

K dM < 2δ,

where χ(M) is the Euler characteristic of M , then∫
M

|H| dM = +∞.
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Proof. From Theorem A of Shiohama [17], for any q ∈ M , we find that

lim
r→∞

2V (Br(q))
r2

= 2πχ(M) −
∫

M

K dM.

It should be noted here that there is a misprint in the denominator of this
expression in Shiohama’s paper. So,

lim
r→∞

V (Br(q)
πr2

< δ.

Thus, Theorem 4.1 implies the result. �
Remark 4.4. The flat plane embedded in R

n shows that the condition
(4.3) is necessary.
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E-mail address: hilario@mat.ufal.br
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