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Abstract

We consider surfaces M2 immersed in En

c
× R, where En

c
is

a simply connected n-dimensional complete Riemannian manifold
with constant sectional curvature c 6= 0, and assume that the mean
curvature vector of the immersion is parallel in the normal bundle.
We consider further a Hopf-type complex quadratic form Q on
M2, where the complex structure of M2 is compatible with the
induced metric. It is not hard to check that Q is holomorphic (see
[3], p.289). We will use this fact to give a reasonable description
of immersed surfaces in En

c
×R that have parallel mean curvature

vector.

1. Introduction

A beautiful result on surfaces M2 immersed in a 3-dimensional eu-
clidean space R

3 was obtained by H. Hopf in 1951 [6] and states that
if M2 is homeomorphic to a sphere and has constant mean curvature
H, then M2 is totally umbilic, hence isometric to a round sphere. The
basic idea of Hopf’s proof is to introduce a complex quadratic form
α̃ in M2 (in the complex structure of M2 determined by its induced
metric) and prove that α̃ is holomorphic if H = constant. Hopf’s theo-
rem was extended by Chern [4] to surfaces immersed in a 3-dimensional
Riemannian manifold M3

c (we use superscripts to denote dimensions)
with constant sectional curvature c and, recently, for surfaces in simply-
connected, homogeneous 3-dimensional Riemannian manifolds with a
4-dimensional group of isometries (Abresch and Rosenberg [1], [2]).

It is then natural to look for higher dimensional ambient spaces in
which a Hopf-type theorem holds.

In this paper, we study the case where x : M2 → En
c ×R is a surface

immersed in the product Riemannian manifold of a simply-connected
n-dimensional Riemannian manifold En

c of constant sectional curvature
c 6= 0 with the euclidean line R. We assume that the mean curvature
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vector H is parallel in the normal bundle. By analogy with [1], introduce
the real quadratic form in M2 =M

Q(X,Y ) = 2〈α(X,Y ),H〉 − c〈X, ξ〉〈Y, ξ〉,
where X, Y are tangent vectors inM , α is the second fundamental form
ofM taking values in the normal bundle ofM , and ξ is the unit tangent
vector of R. Let (u, v) be isothermal parameters in M , and z = u + iv

the corresponding complex parameter. Set

dz =
1√
2
(du+ idv), dz̄ =

1√
2
(du− idv),

and

Z =
1√
2

(
∂

∂u
− i

∂

∂v

)
, Z =

1√
2

(
∂

∂u
+ i

∂

∂v

)
·

In a previous paper [3], we considered this situation and proved that

the (2, 0)-part Q(2,0) = ψ dzdz of Q is holomorphic. This means that
the complex function

Q(2,0)(Z,Z) = 2〈α(Z,Z),H〉 − c〈ξ, Z〉2 = ψ

is holomorphic.
In the present paper, we want to use the fact that Q(2,0) is holo-

morphic to give a reasonable description of which immersed surfaces in
En

c ×R have parallel mean curvature vector. All manifolds are connected
and oriented.

Our first result shows, under no global hypothesis on M , that either
H is an umbilic direction, and our surface is entirely contained in En

c

(this reduces our question to a theorem of S.T. Yau; see items (1) and
(2) below) or we can reduce the codimension of our immersion to three.

Theorem 1. Let M be a surface and En
c be a Riemannian manifold

of constant sectional curvature c 6= 0, and let x : M → En
c × R be

an immersion with parallel mean curvature vector. Then, one of the

following assertions holds:

1) x(M) is a minimal surface in a totally umbilical hypersurface of

En
c .

2) x(M) is a surface with constant mean curvature of a 3-dimensional

totally umbilic or totally geodesic submanifold of En
c .

3) x(M) lies in E4
c × R.

To improve the last part of the above result, we add further hypothe-
ses on M ; this is the subject of the following two theorems.

Theorem 2 is where we can be most precise by assuming that M is
homeomorphic to a sphere. We will show that either H is an umbilic
direction, and we are in the same situation as items (1) and (2) in
Theorem 1, or we are in the situation of item (4) below which generalizes
the result of Abresch and Rosenberg [1] to immersions of spheres in
En

c ×R. The proof of (4) is delicate and is the main point of Theorem 2.
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Theorem 2. Let M be a compact surface of genus zero and let

x : M → En
c × R be an immersion of M with parallel mean curvature.

Then, one of the following assertions holds:

1) x(M) is a minimal surface of a totally umbilical hypersurface

of En
c .

2) x(M) is a standard sphere of a totally umbilical 3-dimensional

submanifold of En
c .

3) x(M) is a standard sphere of E3
c .

4) x(M) lies in E4
c × R ⊂ R

6 (possiby with the Lorentz metric), and
there exists a plane P such that x(M) is invariant for rotations which fix

its orthogonal complement. Furthermore, the level curves of the height

function p 7→ 〈x(p), ξ〉 are circles lying in planes parallel to P .

For the next theorem, we assume that M is complete, that its Gauss-
ian curvature K ≥ 0, and that c < 0. Even for n = 2, Theorem 3 seems
to be new.

Theorem 3. Let M be a complete surface with Gaussian curvature

K ≥ 0, and let x : M → En
c ×R, c < 0, be an isometric immersion with

parallel mean curvature. Then one of the following assertions holds:

1) K ≡ 0.
2) x(M) is a minimal surface of a totally umbilical hypersurface

of En
c .

3) x(M) is a surface with constant mean curvature in a totally um-

bilical 3-dimensional submanifold of En
c .

4) x(M) lies in E4
c × R ⊂ R

6 (with the Lorentz metric), and there

exists a plane P such that the level lines of the height function p 7→
〈x(p), ξ〉 are curves lying in planes parallel to P .

Remark 1. Because the mean curvature vector of our immersion is
parallel, the immersion itself is analytic; this means that the functions of
two real variables that define locally the map x : M2 → En

c ×R are real
analytic functions (See, C.B. Morrey Jr. On the analiticity of solutions

of analytic nonlinear elliptic systems of partial differential equations,
American J. of Math. 80 (1958), 198-237). Such function satisfy a
principle of analytic continuation (See J. Dieudonné, Foundations of
Modern Analysis, Academic Press, 1969, Chapter IX (2.4.2)) which has
the following consequence: Let V be an open, connected subset of Rn

and let f : V → Rk be a real analytic map in V . Let U ⊂ V be an open

subset of Rn. If f ≡ 0 in U then f ≡ 0 in V . Thus an analytic map
cannot vanish in any open set unless it is identically zero.

Remark 2. We should mention that holomorphic quadratic forms
on surfaces that lie in products of space forms of arbitrary dimensions
have been found in the Doctor’s thesis of F.M.A. Vitrio (Fortaleza 2007)
and will appear in the joint work of J.H. de Lira and F.M.A. Vitrio:
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Isometric immersions into Riemannian products, preprint. As far as we
know, there is no overlapping with the present paper.

Remark 3. An interesting question is to characterize those surfaces
for which K ≡ 0 in Theorem 3. This seems to be unknown even for the
case of a complete M2 immersed in M2

c × R, c 6= 0.

Acknowledgement. We want to thank Harold Rosenberg for conver-
sations during the preparation of this paper.

2. Proof of Theorem 1

We will start with a few lemmas.

Lemma 0. Let x : M → En
c × R be an immersion of a surface.

Assume that a subbundle L of the normal bundle contains the image of

the second fundamental form, is parallel in the normal connection and

that TM ⊕ L = V is invariant by the curvature tensor R̃ of En
c × R in

the following sense: Whenever A,B,C ∈ V , we have

R̃(A,B)C ∈ V.

Then, there exists a totally geodesic submanifold S ⊂ En
c × R, with

TpS = V for all p ∈ S, so that x(M) ⊂ S.

Proof. This follows from ([5], Theorem 2), since En
c ×R, with the Levi-

Civitta connection of the product metric, is a reductive homogeneous
space. q.e.d.

Remark 4. We recall that for any bundle E → B with a connection
∇, we say that a subbundleE′ → B, E′ ⊂ E, is parallel if E′ is invariant
by the connection ∇.

Lemma 1. Let x : M → En
c × R be an immersion of a surface M

with parallel mean curvature. Then for all v ∈ T⊥M , AH commutes

with Av ; here Av is the second fundamental form (as a linear map

in TM) corresponding to the normal vector v, namely, 〈Av(X), Y 〉 =
〈α(X,Y ), v〉.

Proof. By the Ricci equation,

〈R⊥(X,Y )H, v〉 = 〈[AH , Av]X,Y 〉+ 〈R̃(X,Y )H, v〉,

where R̃ is the curvature tensor of En
c ×R, and R⊥ the curvature tensor

of the normal bundle of the immersion. SinceH is parallel in the normal
bundle, by the definition of R⊥, R⊥(X,Y )H = 0. Thus, it suffices to

show that 〈R̃(X,Y )H, v〉 = 0.
Let A, B, C, D be orthogonal vectors of En

c × R and denote by A2

the projection of A onto the second factor, namely A2 = 〈A, ξ〉ξ, and
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the same for the other vectors. Then, since πA = A − A2 , where π is
the projection onto the tangent space of En

c , we obtain

(1)

〈R̃(A,B)C,D〉 = c{〈πA, πC〉〈πB, πD〉 − 〈πA, πD〉〈πB, πC〉}
= c{(〈A,C〉 − 〈A2, C2〉)(〈B,D〉 − 〈B2,D2〉)
− (〈A,D〉 − 〈A2,D2〉)(〈B,C〉 − 〈B2, C2〉)},

where we have used that 〈A2, C〉 = 〈A2, C2〉 = 〈A,C2〉, and similarly
for the other vectors.

We need to exclude the case where ξ ∈ TpM , for all p ∈M . For that,
we have the following

Sublemma. If ξ ∈ TpM , for all p ∈ TpM , then x(M) ⊂ E2
c × R.

This case has already been included in item (3) of Theorem 1. Actually,

in this case x(M) is a vertical cylinder over a curve in E2
c of geodesic

curvature 2H.

Proof of the Sublemma. Since ξ ∈ TpM , for all p ∈M , we can choose
a basis {e1, e2} for TM by setting e1 = ξ and e2 to be a unit vector
orthogonal to e1 so that {e1, e2} is a positive basis.

We first show that α(e1, e2) = 0. To see that let {eβ}, β = 3, . . . , n+1,

be an orthonormal basis of TM⊥. Then, for all β,

〈α(e1, e2), eβ〉 = 〈α(e2, e1), eβ〉 = 〈∇̃e2e1, eβ〉 − 〈∇e2e1, eβ〉 = 0,

where we have used that e1 is parallel in the conexion ∇̃ of the ambient
space. Since α(e1, e2) is a normal vector, it follows from the above that
α(e1, e2) = 0. In a similar way, it can be shown that α(e1, e1) = 0. Thus

α(e1, e1) + α(e2, e2) = α(e2, e2) = 2H,

and, since H is parallel in the normal conexion, so is α(e2, e2). It follows
that the first normal space of the immersion, i.e., the image of the second
fundamental form, is a 1-dimensional parallel subspace of the normal
space.

We now set L = Im(α). Since we know that L is parallel in the
normal bundle, we have that L⊕ TM = V is parallel in the connection

∇̃. Choose an orthonormal basis for V so that ξ belongs to that basis.

We want to show that V is invariant by R̃. By linearity, we have only

to check the invariance of R̃ for elements in that basis, say, {a1, a2, a3}.
Let η ∈ V

⊥
. It follows from Eq. (1) that for all i, j, k = 1, 2, 3, we have

〈R̃(ai, aj) ak, η〉 = 0, for all η ∈ V
⊥
.

Thus R̃(ai, aj) ak ∈ V , i.e., V is invariant by R̃. Using Lemma 0, and the

fact that dimL = 1, we conclude that the codimension reduces to one.
Furthermore, since ξ ∈ V , the totally geodesic subspace S of Lemma
0 is E2

c × R and the Sublemma is proved. In addition, since actually
ξ ∈ TM , the last sentence of the Sublemma is obvious.
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Remark 4. Let ϕ : M → L(TM⊥,R) be the map that takes p ∈ M

to the linear function ϕp of TpM given by

ϕp(ηp) = 〈ηp, ξ〉,
where ηp is a normal vector at p. Notice that ξ ∈ TpM iff ϕp vanishes
for all ηp . By analyticity, either ϕ is identically zero or the set of zeroes
of ϕ is a closed set T with no interior points. Thus, either ξ ∈ TpM

everywhere, or ξ ∈ TpM in T . In the first case, the codimension reduces
to one (See the Sublemma above) and the situation is well known. We
will handle the second case in what follows.

Let us return to the proof of Lemma 1.

Proof of the Lemma 1. Let us introduce a basis in T⊥M . Let u be

the projection of ξ in the normal bundle and set e3 =
u

|u| · This is well
defined only in the complement CT of the set T defined in Remark 4.
Notice that CT is an open and dense set in M . Complete e3 into an
orthonormal basis of T⊥M , {e3, e4, . . . , en−1}.

Now let {e1, e2} be an orthonormal basis for TM and let us agree in
the following set of indices: latin letters i, j, k, etc. will vary in 1, 2
and greek letters α, β, etc. will vary in 3, 4, . . . , n + 1. It follows from
equation (1) that

〈R̃(ei, ej)eα, eβ〉 = 0,

if α or β is distinct from 3, since in this case, 〈eα, ξ〉 = 0 or 〈eβ, ξ〉 = 0.

Furthermore, 〈R̃(ei, ej)e3, e3〉 = 0. It follows that
(
R̃(X,Y )v

)⊥
= 0 and

Lemma 1 is proved in CT . Since CT is open and dense, by continuity,

the equality (R̃(X,Y )v)⊥ = 0, hence Lemma 1, holds everywhere in M .
q.e.d.

Corollary of the proof. Either there exists a basis that diagonalizes

Av , for all v ∈ T⊥M or AH is a multiple of the identity, that is, H is

an umbilic direction.
The crucial step in the proof of Theorem 1 is the following Lemma.

Lemma 2. If H is nowhere an umbilic direction, then there exists

a subbundle of the normal bundle that is parallel, contains the image of

the second fundamental form α and has dimension ≤ 3.

Proof. Set

L = span {Im α ∪ e3}.
We recall that e3 is the unit vector of the projection of ξ in the

normal space and it is only well defined in the complement CT of the
set T defined in Remark 4. So, for the time being, we restrict ourselves
to CT .

We will show that L is parallel and this will prove the Lemma.
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It suffices to show that if a normal subbundleW ⊥ L then∇⊥W ⊥ L.
By Lemma 1, there exists a frame, say {e1, e2}, that diagonalizes α. Let
w ∈W . We first show that

(2) −Aijk = 〈α(ei, ej),∇⊥
ek
w〉 = 0, for all i, j, k = 1, 2.

Indeed, since w ⊥ L,

〈α(ei, ej),∇⊥
ek
w〉 = −〈∇⊥

ek
α(ei, ej), w〉 = Aijk .

Since α is symmetric, Aijk = Ajik . Furthermore, by definition,

〈(∇⊥
ek
α)(ei, ej), w〉 = 〈∇⊥

ek
α(ei, ej), w〉 − 〈α(∇ekei, ej), w〉

−〈α(ek,∇kej), w〉 = 〈∇⊥
ek
α(ei, ej), w〉,

since w ⊥ Imα. By using the equation of Codazzi,

(∇⊥
ek
α)(ei, ej) = (∇⊥

ei
α)(ek, ej) + (R̃(ek, ei)ej)

⊥

= (∇⊥
ej
α)(ei, ek) + (R̃(ei, ej)ek)

⊥.

But, by (1), 〈R̃(ek, ei)ej , w〉 = 0 = 〈R̃(ei, ej)ek), w〉. Thus,
(3) Aijk = Akji = Aikj .

Notice now that

〈α(ei, ej),∇⊥
ek
w〉 = 〈A∇⊥

ek
w ei, ej〉.

So, since {ei, ej} diagonalizes α, if i 6= j, 〈α(ei, ej),∇⊥
ek
w〉 = −Aijk = 0,

i 6= j. It follows from the above and (3) that if two of the indices i,
j, k are distinct, Aijk = 0. We now show that if all indices are equal,
Aiii = 0. Indeed,

Aiii = 〈∇⊥
ei
α(ei, ei), w〉 = −〈α(ei, ei)∇⊥

ei
w〉

− 〈α(ej , ej),∇⊥
ei
w〉 + 〈α(ej , ej),∇⊥

ei
w〉

− 〈2H,∇⊥
ei
w〉+ 〈α(ej , ej),∇⊥

ei
w〉 = 2〈∇⊥

ei
H,w〉 +Ajji = 0.

This proves (2). It remains to prove that if w ∈ W , then ∇ekw ⊥ e3 .
For that, observe that, being a product of locally symmetric spaces,
En

c ×R is locally symmetric. This means that

(∇̃ZR̃)(X,Y,w) = 0, for all X,Y,Z tangent vectors.

But

(∇̃ZR̃)(X,Y,w) = ZR̃(X,Y,w) − R̃(∇ZX,Y,w) − R̃(α(X,Z), Y, w)

− R̃(X,α(Y,Z), w) − R̃〈X,∇ZY,w) + R̃(X,Y,AwZ)− R̃(X,Y,∇⊥
Zw).

Observe that, by Eq. (1) if C is orthogonal to A and B, and C2 =

〈C, ξ〉 = 0, then R̃(A,B)C = 0. Thus all terms of the right hand side
of the above equality vanish, except for the two last ones. Furthermore,

since w ⊥ Im(α), we have that Aw = 0. It follows that R̃(X,Y,∇⊥
Zw) =

0, for all X, Y , Z, with X ⊥ Y .
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We now assume that X2 6= 0 and Y2 = 0, then, by Eq. (1) it follows
that

〈R̃(X,Y )∇⊥
Zw, Y 〉 = 〈X, ξ〉〈∇⊥

Zw, ξ〉 = 0.

Therefore 〈∇⊥
Zw, ξ〉 = 0, and this proves Lemma 2, for CT ⊂ M .

Since CT is open and dense in M , the normal bundle W is still par-
allel throughout M , by continuity. This proves that Lemma 2 holds in
M . q.e.d.

In case that H is an umbilic direction, we need the following Lemma.
We recall that we proved in ([3] Remark 2.3), that the (2, 0)-part Q(2,0)

of Q given by

Q(X,Y ) = 2〈α(X,Y ),H〉 − c〈X, ξ〉〈Y, ξ〉

is holomorphic.

Lemma 3. Let H be nonzero and an umbilic direction everywhere.

Then 〈X, ξ〉 = 0, for every tangent vector field X. It follows that TM ⊂
TEn

c , hence x(M) ⊂ En
c .

Proof. By definition of Q, we can write Q(2,0) = Q(Z,Z)dz2 where

Q(Z,Z) = 2〈α(Z,Z),H〉 − c〈ξ, Z〉2.

Now choose an orthonormal basis {X,Y } for TM . Then

〈α(Z,Z),H〉 = 〈α(X,X) − α(Y, Y )− 2i α(X,Y ),H〉.

Since H is an umbilic direction, AHZ = µZ, for Z ∈ TM . Thus

〈α(X,X),H〉 = 〈AHX,X〉 = µ|X|2 = µ = 〈α(Y, Y 〉,H〉

and

〈α(X,Y ),H〉 = 0.

It follows that if H is an umbilic direction,

Q(Z,Z) = −c〈ξ, Z〉2.

Furthermore, because Q(2,0) is holomorphic,

0 = Z Q(Z,Z) = −cZ〈Z, ξ〉2 = −2c〈Z, ξ〉〈∇̃ZZ, ξ〉
= −2c〈α(Z,Z), ξ〉〈ξ, Z〉,

since (∇̃ZZ)
T = 0 and, by definition,

α(Z,Z) = ∇̃ZZ − (∇̃ZZ)
T = (∇̃ZZ)

N .
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Notice that, by denoting e1 and e2 the unit vectors of
∂

∂u
,
∂

∂v
, respec-

tively, we have

(3)

α(Z,Z) = λ2 α

(
e1 − ie2√

2
,
e1 + ie2√

2

)

=
λ2

2
{α(e1, e1) + α(e2, e2)} = λ2H.

Thus, from

0 = −2c〈α(Z,Z), ξ〉〈ξ, Z〉 = −2cλ2〈H, ξ〉〈ξ, Z〉
we obtain that either 〈ξ, Z〉 = 0 or 〈H, ξ〉 = 0. Let G be the set of
zeroes of 〈ξ, Z〉. G is not M ; otherwise, 〈ξ, e1〉 = 〈ξ, e2〉 = 0 and we are
done. By analyticity, G is a closed set with no interior points. In the
open and dense complement CG of G, we have that 〈H, ξ〉 = 0. Thus
X〈H, ξ〉 = 0, for all X. Since H is parallel in the normal connection
and ξ is parallel, we have

0 = X〈H, ξ〉 = 〈∇̃XH, ξ〉+ 〈H, ∇̃Xξ〉 = −〈AHX, ξ〉.
But AH is a nonzero multiple of the identity. Thus 〈X, ξ〉 = 0, for all
X and all points in CG. By the continuity of 〈X, ξ〉 in M , this holds for
the whole M . This proves Lemma 3. q.e.d.

Remark 5. Notice that the map p 7→ (AH −µI)(p), µ a constant, is
analytic. If H is an umbilic direction (which is a zero of the above map),
either this holds everywhere in M or it holds for a closed set without
interior points in M . The first case is treated by Lemma 3. For the
second case, H is not an umbilic direction in an open, dense set W in
M . In the proof of Lemma 2, we proved that it holds throughout W .
By continuity it holds inM . Thus, Lemmas 2 and 3 exhaust all possible
situations, and the final conclusion is:

Either H is everywhere an umbilic direction, and M2 ⊂ En
c , or H is

nowhere an umbilic direction, and there exists a subbundle of the normal

bundle that is parallel, contains the image of the second fundamental

form and has dimension greater or equal to three.

We now need a theorem of reduction of codimension.

Theorem A. Let x : M → En
c × R be an immersed surface, assume

that H is nowhere an umbilic direction, and let L = Span{Im(α), e3}.
Set V = L ⊕ TM . Then there exists a totally geodesic submanifold

S ⊂ En
c × R, with dimS = dimV , such that x(M) ⊂ S.

Proof. If follows from Lemma 2 that the bundle L⊕TM is parallel in

the connection ∇̃. Further, V is invariant by R̃ in the sense of Lemma
0. This follows from Eq. (1) by the same argument we used in the proof
of the Sublemma of Lemma 1.

We now apply Lemma 0, and this proves the Theorem A. q.e.d.
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We also need a theorem of Yau [8]:

Theorem B (Yau, Theorem 4). Let x : M2 → En
c a surface im-

mersed in En
c with parallel mean curvature vector. Then, either M2 is

a minimal surface of an umbilical hypersurface of En
c or M2 lies in a

3-dimensional umbilical submanifold of En
c with constant mean curva-

ture.

We now complete the proof of Theorem 1. IfH is an umbilic direction,
by Lemma 3, M ⊂ En

c , and by Theorem B, we obtain items (1) and
(2). If H is not an umbilic direction, there exists a normal subbundle L
that is parallel in the normal connection, contains the image of α and
dim L ≤ 3 (Lemma 2). By Theorem A, M is actually contained in a
totally geodesic submanifold S of En

c (c)× R of dimension at most five.
Since the set V of Theorem A contains a nonzero multiple of ξ, S is
actually of the form E4

c × R. Thus, we obtain (3) of Theorem 1. This
concludes the proof of Theorem 1.

3. Proof of Theorem 2

For the purpose of our future computations, we want to consider the
following cases:

Case a. Assume that ξ ⊥ TpM , for all p, in an open, connected subset
of M . Then this open subset lies in En

c . By analyticity, the same holds
for x(M). As we have seen before (Lemma 3 of the previous Section),
this occurs if H is an umbilic direction and implies that x(M) ⊂ En

c . In
the previous Section, this case was handled by using Yau’s theorem [8].

Case b. ξ ∈ TpM , for all p in an open, connected subset of M . It
can be shown in that case that the first normal space is parallel and has
dimension one (See Sublemma of Section 2). It follows that the above
open subset lies in E2

c × R. By analyticity, the same holds for x(M).
However, under the hypothesis of Theorem 2, we have the following

Assertion. If M is homeomorphic to a sphere, Case b cannot occur.

Proof of the Assertion.
The proof is very simple. Since ξ is a parallel vector field, the hypoth-

esis in Case b means that we have a parallel vector in a connected, open
subset U of M . This implies that the Gaussian curvature K vanishes
in U and, by analyticity, everywhere in M . But, by the Gauss-Bonnet
formula, the integral of K in M is positive. Hence, there are points
where K is positive, a contradiction. This proves the Assertion.

Since Case a can be handled by using Yau’s theorem as in Theorem 1,
and this will take care of items 1 to 3, of Theorem 2, we will assume
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that we are not in Case a and will concentrate ourselves in the proof of
item 4. Notice that in our situation, H is not an umbilic direction.

Choose an orthonormal frame {e1, e2, . . . , en+1} such that e1 , e2 are
tangent vectors, and e1 and e3 are the unit vectors in the directions of
the projections of ξ in the tangent and normal spaces, respectively; this
means that 〈ξ, eA〉 = 0, if A is distinct from 1 and 3.

Since M2 is homeomorphic to a sphere, the holomorphic function
Q(2,0)(Z,Z) vanishes. Then we obtain that

Q(e1, e1) = Q(e2, e2), Q(e1, e2) = 0.

Therefore, 2〈α(e1, e2),H〉 = c〈ξ, e1〉〈ξ, e2〉.
Since 〈ξ, e2〉 = 0, the basis {e1, e2} diagonalizes AH , hence, by Lemma

1, diagonalizes α. From now on, we define αij = α(ei, ej), i, j = 1, 2.
Observe now that with the choice we made of e1 and e3 , we can write

ξ = cos θ e1 + sin θ e3 .

Proposition 1. In the computations that follow, we need the follow-

ing identities:

i) ∇e1e1 = 0 = ∇e1e2 ,

ii) dθ(e2) = 0,
iii) ∇⊥

e2
e3 = 0.

Proof. Since ξ is parallel, we obtain

0 = ∇̃e1ξ = − sin θ dθ(e1)e1 + cos θ∇e1e1 + cos θ α11

+ cos θ dθ(e1)e3 + sin θ∇⊥
e1
e3 − sin θ A3(e1).

The tangent and normal components of ∇̃e1ξ also vanish. For the tan-
gent component, we have

− sin θ dθ(e1)e1 + cos θ∇e1e1 − sin θ Ae3(e1) = 0.

Since {e1, e2} diagonalizes α, Ae3e1 = βe1 ; also ∇e1e1 = be2 . Since e1
and e2 are linearly independent, the vanishing of the above expression
implies that both the coefficients of e1 and e2 vanish. Thus ∇e1e1 =
be2 = 0. Since 〈e1, e2〉 = 0, 〈∇e1e2, e1〉 = 0, hence ∇e1e2 = 0.

So we have obtained (i).
By same token,

0 = ∇̃e2ξ = − sin θ dθ(e2)e1 + cos θ∇e2e1 + cosαα12

+ cos θ dθ(e2)e3 + sin θ∇⊥
e2
e3 − sin θ A3(e2)

whose tangent and normal components are, respectively,

sin θ dθ(e2)e1 + cos θ∇e2e1 − sin θ A3(e2) = 0,

cos θ dθ(e2)e3 + sin θ∇⊥
e2
e3 = 0,

since α12 = 0. Because ∇e2e1 = ae2 and e2 is an eigenvector of Ae3 , we
conclude from the first equality that dθ(e2) = 0, hence, from the second
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equality, ∇⊥
e2
e3 = 0. This proves (ii) and (iii), and concludes the proof

of Proposition 1. q.e.d.

Proposition 2. The normal vector α22 = α(e2, e2) is parallel in the

normal connection along the integral curves of e2 .

Proof. We want to show that ∇⊥
e2
α22 = 0. We first notice that

∇⊥
e2
α22 = −∇⊥

e2
α11 = −(∇⊥

e2
α)(e1, e1) + 2α(∇e2e1, e1)

= −(∇⊥
e1
α)(e2, e1) + (R̃(e2, e1)e1)

⊥

= −(∇⊥
e1
α)(e2, e1),

where we have used that H is parallel, ∇e2e1 = ae2 , α(e1, e2) = 0, the

Codazzi equation, and, by Eq. (1), that (R̃(e2, e1)e1)
⊥ = 0. But

(∇⊥
e1
α)(e2, e1) = ∇⊥

e1
α(e2, e1)− α(∇e1e2, e1)− α(e2,∇e1e1) = 0,

since ∇e1e1 = ∇e1e2 = 0 (see Proposition 1). This proves Proposition 2.
q.e.d.

Proposition 3. ∇e2e2 = be1 and b is constant along the integral

curves of e2 .

Proof. Since ξ = cos θe1 + sin θ e3 , we have that 〈ξ, e2〉 = 0. By
differentiation, we obtain

0 = e2〈ξ, e2〉 = 〈∇̃e2ξ, e2〉+ 〈ξ, ∇̃e2e2〉.
Since 〈∇̃e2ξ, e2〉 = 0 we have

0 = 〈∇̃e2e2, ξ〉 = 〈∇e2e2, ξ〉+ 〈α(e2, e2), ξ〉
= 〈∇e2e2, cos θ e1 + sin θ e3〉+ 〈α22, cos θ e1 + sin θ e3〉
= cos θ〈∇e2e2, e1〉+ sin θ〈α22, e3〉.

It follows that
〈∇e2e2, e1〉 = b = − tg θ〈α22, e3〉.

We now differentiate b and obtain

e2(b) = sec2 θ dθ(e2)〈α22, e3〉 − tg θ{〈∇⊥
e2
α22, e3〉+ 〈α22,∇⊥

e2
e3〉 = 0,

since dθ(e2) = 0 by (ii) of Proposition 1, ∇⊥
e2
α22 = 0 by Proposition 2,

and ∇⊥
e2
e3 = 0 by (iii) of Proposition 1. This proves Proposition 3.

q.e.d.

Now consider E4
c × R (which is our ambient space when H is not

an umbilical direction; see the end of the proof of Theorem 1) ⊂ R
5 ×

R (where R
5 may possibly have a Lorentz metric) and let ∇ be the

connection of R5 × R.

Proposition 4. The subspace Span {e2,∇e2e2} is parallel along the

integral curves of e2 .
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Proof. Notice that in this new ambient space

∇e2e2 = be1 + α22 + eη,

where η is the unit vector normal to the umbilic submanifold to E4
c

in R
5 which is determined by the orientation of E4

c . Notice that e is
constant.

Now we differentiate ∇e2∇e2e2 and observe that:

∇e2(be1) = b∇e2e1 + bα12 ,

∇e2(α22) = ∇e2α22 +∇⊥
e2
α22 = ∇⊥

e2
α22 −Aα22

e2 ,

and, by using Proposition 2, we obtain ∇⊥
e2
α22 = 0. Finally, since

∇e2η = −ee2, we have

∇e1∇e2e2 = b∇e2e1 + b α12 −Aα22
e2 − e2e2

which is a multiple of e2 , since α12 = 0, ∇e2e1 = −b e2 , and for all v
normal Ave2 is a multiple of e2. This proves Proposition 4. q.e.d.

Proposition 5. The integral curves of e2 are plane circles.

Proof. First, notice that |∇e2e2| is constant. For, b e1 , α22 , and e η
are orthogonal vectors which have constant norms (recall that α22 is
parallel along the integral curves of e2). Since ∇e2∇e2e2 is a multiple
of e2 , we conclude the proof of Proposition 5. q.e.d.

Proposition 6. The integral curves of e2 lie in parallel planes.

Proof. We first observe that the integral curves of e2 are the level
curves of the height function h(p) = 〈x(p), ξ〉, p ∈ M . To see that let
w1 and w2 be first order differential forms defined inM by wi(ej) = δij ,
i, j = 1, 2. Then

dh = 〈dx, ξ〉 = 〈w1e1 + w2e2, ξ〉,
hence

dh(e2) = 〈w1(e2)e1 +w2(e2)e2, ξ〉.
Since ξ = e1 cos θ + e3 sin θ, we conclude that

dh(e2) = 〈e2, ξ〉 = 0,

which implies that the height function is constant along the integral
curves of e2 .

Given a point in a given integral curve of e2 , any other such integral
curve, close enough to the given one, can be connected to this point by
a unique gradient line; this allows us to talk about corresponding points
at distinct integral curves of e2 that are close enough.

Notice that the gradient lines parametrized by arclength are integral
curves of the vector field e1 . Since,

∇e1e2 = ∇e1e2 + α12 = 0,
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we see that the tangent lines at corresponding points of distinct integral
curves of e2, that are close enough, are parallel. Thus such curves are
in parallel planes.

Since the critical points of the height function are the zeroes of the
analytic differential dhp : Xp → 〈Xp.ξ〉, where Xp is a tangent vector
at p, they form a closed set F in M with no interior points; notice
that we have discarded Case a, so we cannot have 〈Xp, ξ〉 ≡ 0. The
complementary set CF is an open and dense set that may have a number
of connected components. Clearly, for a given connected component of
CF , the planes containing the trajectories of e2 are all parallel to a fixed
plane.

Now, given a point that belongs to the boundary of two connected
components (CF )1 and (CF )2, consider the two planes P1 and P2 that
are limit of the planes containing points of the sequences {p1i } ∈ CF )1
and {p21} ∈ CF )2, respectively, that converge to p. We claim that P1 =
P2 . Otherwise, their intersections would be a straight line that, by
completeness extend to the whole M . This implies that K ≡ 0, a
contradiction.

It follows that all planes containing the integral curves of e2 are par-
allel to a fixed plane, and this proves Proposition 6. q.e.d.

Remark 6. In the present situation, where M is homeomorphic to
a sphere, a simpler argument would prove Proposition 6. This Proposi-
tion, however, will be used in the proof of Theorem 3, and there we will
need the full force of the above argument.

Now, decompose R5×R by two orthogonal subspaces P ⊕P⊥, where
P is a plane which contains one integral curve of e2 , and P

⊥ is its or-
thogonal complement. The integral curve of e2 in P can be parametrized
by

(5) ĝ + r cos θ f1 + r sin θ f2 ,

where {f1, f2} is an orthonormal basis of P , r is a function on M such
that e2(r) = 0, and ĝ ∈ P is the position vector of the center of the
circle in (5).

As we move along a gradient line, the level curves of the height func-
tion h (circles in planes parallel to P ) are given by β(s) = ĝ(s) +
r(s) cos θ f1 + r(s) sin θ f2 . Project the curve β(s) into P and keep,
for simplicity, the same notation as in the above equality.

We claim that, as we move along a gradient line, the point ĝ(s) re-
mains fixed, i.e., ĝ′(s) = 0.

To see that, let ê1 be the projection of e1 into P . Then

ê1 =
∂

∂s
β(s) = ĝ′(s) + r′(s) cos θ f1 + r′(s) sin θ f2 .
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Since e2 ∈ P , 〈ê1, e2〉 = 0. By observing that e2 = − sin θ f1 + cos θ f2 ,
we obtain that

0 = 〈ê1, e2〉 = 〈ĝ′(s), e2〉,
and, since e2 spans P , we conclude that ĝ′(s) ≡ 0, as we claimed.

We have shown that if we are not in Case (a) above, item (4) of
Theorem 2 holds. By using the analyticity of the immersion in the way
as we did before (cf. Remark 4), we will show that item (4) of Theorem
2 holds in M .

As we have seen before, if H is an umbilical direction everywhere,
x(M) ⊂ En

c . In this case, we can use Yau’s theorem mentioned in
Section 2 and conclude the other items of Theorem 2.

4. Proof of Theorem 3

Consider the complex structure on M given by z = u + iv, where
(u, v) are isothermal parameters in which the metric on M is given by

ds2 = λ2(du2 + dv2). Notice that Q(2,0) = ψ dz2, where ψ a complex
function that, from our hypothesis, is holomorphic. Furthermore, since
|Z| = λ,

|Q(2,0)| =
∣∣∣∣Q

(2,0)

(
Z

λ
,
Z

λ

)∣∣∣∣ =
1

λ2
|Q(2,0)(Z,Z)| = 1

λ2
|ψ|.

Now, if Q(2,0) is not identically zero, its zeroes are isolated. We claim
that away from the zeroes of Q(2,0)

∆ log |Q(2,0)| = 4K.

Indeed, since Q(2,0) is holomorphic, log(|Q(2,0)|λ2) is harmonic. Thus,

∆ log |Q(2,0)| = −2∆ log λ = 4K,

where in the last equality, we used the expression of the Gaussian cur-
vature in isothermal coordinates. This proves our claim.

Since K ≥ 0, M is parabolic by Huber’s theorem ([7]); this means
that all subharmonic functions bounded from above are constants. We
will show that |Q(2,0)| is bounded. Thus |Q(2,0)| = constant, hence
K ≡ 0 in M .

First, notice that, since

Q(X,Y ) = 2〈α(X,Y ),H〉 − c〈X, ξ〉〈Y, ξ〉,
by letting β(X,Y ) = 〈X, ξ〉〈Y, ξ〉, we obtain

|Q(2,0)|2 ≤ |2〈α(2,0),H〉|2 + c2|β(2,0)|2.
But |β(2,0)| ≤ 1, and a simple computation shows

(6) 〈α(2,0),H〉2 = (trace of AH)2 − det(AH).
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Now choose a frame (e1, e2, f1, f2, f3) where e1, e2 are orthonormal
tangent vectors, and f1, f2, f3 are orthonormal normal vectors, such
that f1 = H

/
|H| . Notice that, since the mean curvature vector H has

no component along f2 and f3 , we have that (trace Afi) = 0, for i 6= 1.
Also, since H is parallel, (trace AH)2 is constant. Thus, it suffices

to show that (detAH) ≥ 0 to conclude from (6) that 〈α(2,0),H〉2 is
bounded.

For that, observe that, by hypothesis, 〈R̃(e1, e2), e1, e2〉 ≤ 0. Since,

(7) K = 〈R̃(e1, e2)e1, e2〉+
3∑

i=1

det Afi ,

and K ≥ 0, we have that
3∑

i=1
det Afi ≥ 0. Since, for i 6= 1, Afi is

symmetric and has trace zero, then det(Afi) ≤ 0, if i 6= 1. Thus, by

using (7), we conclude finally that (detAH) ≥ 0, hence 〈α(2,0),H〉 is

bounded and the same holds for |Q(2,0)|.
Thus, we have shown that if Q(2,0) is not identically zero, then K ≡ 0,

which proves (1) of Theorem 3.

If Q(2,0) ≡ 0, we first observe that Case (a) and (b) can occur. By
using analyticity in the same way we did before in this paper we can
easily check that Case (a) leads to items (2) and (3) whereas Case (b)
leads to the fact that x(M) ⊂ E2

c ×R; this is already contained in item
(4). With these cases out of the way, we can choose an appropriate
frame and proceed as in Theorem 2 except that the level curves of the
height function are not necessarily circles. This proves completely item
4 and concludes the proof of Theorem 3.
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Av. Rodrigo Otávio Jordão Ramos, 3000

63077-000 Manaus, AM, Brasil

E-mail address: tribuzy@pesquisador.cnpq.br




