Hypersurfaces with null higher order
mean curvature
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Abstract. A hypersurface M" immersed in a space form is 7-minimal if its (» 4 1)**-
curvature (the (» + 1)’ elementary symmetric function of its principal curvatures)
vanishes identically. Let W be the set of points which are omitted by the totally geo-
desic hypersurfaces tangent to M. We will prove that if an orientable hypersurface M”
is 7-minimal and its 7*-curvature is nonzero everywhere, and the set  is nonempty
and open, then M" has relative nullity n — r. Also we will prove that if an orientable
hypersurface M" is r-minimal and its »/"-curvature is nonzero everywhere, and the
ambient space is euclidean or hyperbolic and ¥ is nonempty, then M” is r-stable.
Keywords: r-minimal, r-stable, relative nullity.

Mathematical subject classification: 53A10, 53C42.

1 Introduction

Let Q’C’“ be a (n 4+ 1)-dimensional, simply-connected, complete Riemannian
manifold with constant sectional curvature c. Let M" be a n-dimensional con-
nected manifold, and x: M" — Q"' be an isometric immersion. For every
point p € M", let (Q7), be the totally geodesic hypersurface of Q"' tangent
to x(M") at x(p).
We will denote by
w=q - @,

PEM

the set of points which are omitted by the totally geodesic hypersurfaces tangent
to x (M"). We will work with an immersion whose set W is nonempty. In this
direction, T. Hasanis and D. Koutroufiots, see [11], proved that

*The author is partially supported by CNPq.
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Theorem A. Let x: M?> — Q? be a complete minimal immersion with ¢ > 0.
If' W is nonempty, then x is totally geodesic.

The proof is heavily based on the techniques of two dimensional manifolds.
Now, let x: M" — Q’C’“ be an isometric immersion. In [4], H. Alencar and
K. Frensel extended the result above assuming an extra condition. In fact, they
proved that

Theorem B. Let M" be a complete Riemannian manifold and x : M" — Q!
be an isometric minimal immersion. If W is open and nonempty, then x is totally
geodesic.

On the other hand, H. Alencar, in [1], provides examples of non-totally geo-
desic minimal hypersurfaces in R?", n > 4, with nonempty W, see the Exam-
ple 3.2. These examples show that, in higher dimensions, it is necessary to add
an extra hypothesis. In Theorem B, the extra condition is W open.

The aim of this work is to extend Theorem B for other immersions. In order
to do that, we will introduce some definitions.

Let M” be an oriented Riemannian manifold and x: M" — (@Z“ be an
isometric immersion. Considering the symmetric functions S, of the principal
curvatures ky, ..., k,:

Si= ) kyok (=r <,

i1<---<iy

the r-mean curvature H, of x is defined by (’:) H =5,.
It is convenient to introduce the Newton transformations defined inductively
by
To=1,T =S851—-AT,_,.

Here [ is the identity matrix and A is the shape operator associated to x.

We say that x: M" — Q'™ is r-minimal if H,,; = 0, i.e., x is a critical
point of the variational problem of minimizing the integral

A,(x):/IF,(Sl,...S,)dV,
D

where

—r+1
Fo=1,F =8,..., IFF:S,.+C(n—r:—)IF,_2,
v —

2<r<n-—1.
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Associated to the second variation formula of A, are the second order differ-
ential operators

L.f=tr(T,V*f),

and
Jof=Lf—+2)8 0S8 0f+ch—r)Sf,

where f is a differentiable function and V2 f is the hessian of f.

When the ambient space is a space form, H. Rosenberg in [12] proved that
L, f = div(T,Vf), where V f is the gradient in the induced metric, and thus
L, is self-adjoint operator.

Thus, a bilinear symmetric form /. can be defined by

I(f. g = —/Merng,

where f and g are differentiable functions on M.

In [3], H. Alencar, M. do Carmo and M.F Elbert defined stability for »-min-
imal immersions:

Definition 1.1. Let D be a domain with compact closure and piecewise
smooth boundary. D is r-stable if 1.(f, /) > 0 for all /' € C°(D) or if
L.(f, f) < Oforall f € CX(D). D is r- unstable if there exists a function
f € CZ(D) suchthat I.(f, /) < 0and there exists a function g € C°(D) such
that 7, (g, g) > 0.

Now we recall the definition of relative nullity. Consider v(p) = dim Ker(4),
where A is the shape operator associated to the second fundamental form in p.
The relative nullity is v = min ¢ pm vV(p).

Our first result reads as follows:

Theorem 1.1. Let M" be a complete and orientable Riemannian manifold
and let x: M" — Q"' be an isometric r-minimal immersion and H, # 0
everywhere, r > 1. If W is open and nonempty, then v = n — r. In particu-
lar, x(M") is foliated by complete totally geodesic submanifolds of dimension
n—r.

We observe that there exist examples of 1-minimal hypersurfaces with
H, # 0 everywhere in R*", n > 5, with nonempty W but v # n — 1, see the
Example 3.1. These examples show that is necessary to add an extra hypothesis.
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Corollary 1.1. Let M" be a complete Riemannian manifold and let
x: M" — S"t! be an isometric immersion with H, = 0 and mean curva-
ture Hy # 0 everywhere. There no exists an immersion x such that the set W is
open and nonempty.

Corollary 1.2. Let M" be a complete Riemannian manifold and let
x: M" — R be an isometric immersion with Hy = 0 and scalar curva-
ture H, # 0 everywhere. If W is open and nonempty, then x(M") = S? x R" 2,

The second result is the following:

Theorem 1.2. Let M" be a complete and orientable Riemannian manifold, and
let x: M" — Q'c’“, ¢ <0, be an isometric r-minimal immersion and H, # 0
everywhere, r > 1. If W is nonempty, then x is r-stable.

2 Support function in space of constant curvature

Let us introduce the notions of position vector and support function in Q7+,
Consider an isometric immersion x: M" — Q"*!. Let s, be a solution of the
ordinary differential equation y” + ¢y = 0, with initial conditions y(0) = 0 and
y'(0) = 1. Then

r ,if ¢ =0,

sin(ver) e,
Se(r) = \/E

e

smh(v=er) 5 o 2o

/<

For every point py € QZ“, we will consider the function r(.) = d(., po),
where d is the distance function of Q”*!, and we will denote by grad r the
gradient of the function 7 in Q7+,

Using the analogy with the Euclidean Space, the vector field X(p) =
s.(r) gradr will be called position vector with origin pg. When ¢ > 0, the
distance function is differentiable in QZ’“ — {po, —po}. Therefore, in this case,
the position vector with origin py is differentiable in Q"' — {po, — po}.

Let M" be an oriented Riemannian manifold, x: M" — Q"*! an isometric
immersion, and N a unit normal vector field of x. The function g: M — R
defined by g = (X, N), where X is the position vector with origin p,, will be
called the support function of the immersion x. In the case ¢ > 0, this function
is differentiable if x(M) € Q"' — {py, —po}-
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For the case ¢ = 0, |g(p)] is the distance from py to the tangent hyperplane to
x(M") at x(p). In [4], the authors give a geometric interpretation of the support
function in the case ¢ # 0. We will describe the interpretation below.

In the case ¢ > 0: We will suppose that Q"*! is the sphere of radius % in
R™2_ Then |g(p)| is the euclidean distance from the point p, to the hyperplane
which contains the totally geodesic hypersurface tangent to x (M") at x(p). In

fact, since

po = cos(x/er(p)p — W% grad r(p),
we have
B sin(y/cr (p))

(po, N(p)) = (grad r(p), N(p)) = —g(p).

Je
So, |g(p)| = [{po, N(p))I.

In the case ¢ < 0: Let IL"*? be the euclidean space R"*? endowed with the
Lorenzian metric

((u, v)) = uvr + ... + Upp1Vpy1 — Upg2Vn2.

Let H"*!(c) be the hypersurface of "2 given by

1
Hn+l(c) = {v e L"*2. Upao > 0, ({(v,v)) = Z}

It is well know that H"*!(c) with the induced metric is a model of hyperbolic
space Q"1

We can assume, without loss of generality, that po = (0,0,...,0, \/LE)
In this case, the euclidean distance from the point p, to the hyperplane that
passes through the origin of R"*? and contains the totally geodesic hypersurface,
(Q?7), tangent to x (M") at x(p), is given by

lg(p)l

VI+2¢(p)?

In fact, since

sinh(v/=cr(p))

po = cosh(v/—cr(p))p — Ner: grad r(p),
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we have that
{{po, N(p))) = —g(p).

Let N(p) = (N1, ..., Nys1, Nyy2). Then

— 1
N=——"N,

1+2N7,,

is a unit vector in R"*2 orthogonal to the hyperplane that passes through the
origin of R"*2 and contains (Q"),. Therefore,

N | e
)I_ - 27
JI+2n2, | VI+280)

l(g. N(p)

and this concludes the geometric interpretation.

Lemma 2.1. Letx: M" — QZ’“ be an isometric immersion, and 0 < r <
n—1peM".

(@) If S;+1(p) =0, then T, is semi-definite at p;

(d) If S,1(p) =0 and S,12(p) # 0, then T, is definite at p.

Proof. See [5], Proposition 2.8, p. 192. O
An other important result is:
Lemma 2.2. Letx: M" — Q""! be an isometric immersion and p € M".

(@) For 1 <r < n, one has H* > H,_|H, 1. Moreover, if equality happens
forr =1 orforsomel <r < n, with H.,\ # 0 in this case, then p is
umbilical point;

(b) If, for some 1 < r < n, one has H, = H,1 = 0, then H; = 0 for all
r < j < n. In particular, at most r — 1 of the principal curvatures are
different from zero.

Proof. See [6], Proposition 2.1, p. 176. O

The result below is standard, for completeness we will give a proof.



487

Lemma2.3. Letx: M" — Q"*! be an isometric immersion. The operator L,
associated to the immersion x is elliptic if, and only if, T, is positive definitive.

Proof. Let { } be a local frame of M” at p. By direct computation, we have

locally the expression of L,:

er(P) ng]tlk

i,j,k

Z Y t’krllj ax;

where g;; is the metric of M", Fl{‘j are the Christoffel symbols and

P d a
v ' ax,- ’axj ’

From the above local expression, it is easy to conclude that the linear operator
L, is elliptic if, and only if, 7, is positive definitive. O

Corollary 2.1. Letx: M" — QZ“ be an isometric immersion. If T, is negat-
ive defined, then the operator — L, associated to the immersion x is elliptic. [

3 r-minimal hypersurface with / nonempty

In this section we will prove the result on »-minimal hypersurface with W
nonempty and open.

Theorem 3.1 (Thm. 1.1 in Introduction). Let M" be a complete and ori-
entable Riemannian manifold and let x : M" — Q"' be an isometric r-minimal
immersion and H, # 0 everywhere, r > 1. If W is open and nonempty, then
v = n —r. In particular, x(M") is foliated by complete totally geodesic sub-
manifolds of dimension n — r.

Proof. Let x: M" — Qg“ be an isometric r-minimal immersion, i.e.,
H. = 0in M. Letq € W and X be the position vector with origin g.
Fix an orientation, N, such that the support function g(p) = (X(p), N(p)) is
positive.

In [2], Lemma 2, the authors proved that
L,g=—(VS§ 41, XT) =+ D810 — (81541 — (r +2)S,12)g,

where 6, = s..
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By using the equality with H,; = 0 we have

L,g =@ +2)S28. (1)

Using Lemma 2.1(a) we have that 7, is semi-definite. Since H, does not
vanish, we have that H, is positive or negative, because ¢, H, = tr(7,), where
¢ =(n— r)(:f). Now we use Lemma 2.2 and obtain:

0= H>

= H, H 5. (2)

Using the information above, we claim that H,,, = 0.

In fact, first we assume that H,, > 0. Using (2) and hypothesis we conclude
that H, < 0 and thus 7, is negative defined. Applying Corollary 2.1 we have
that — L, is elliptic. Whereas from (1) we have

Now, following exactly the proof given by H. Alencar and K. Frensel in [4],
Theorem 3.1, we conclude that g attains its minimum in M”. Then, from
the Maximum Principle, g is constant. Since g is positive, we have that H,,,
vanishes.

Second, we assume H,,, < 0. Using (2) and H, # 0 we conclude that
H, > 0 and thus 7, is positive defined. Applying Lemma 2.3 we have that L,
is elliptic. Whereas from (1) we have

L.g=<0.

Now, following exactly the proof given by H. Alencar and K. Frensel in [4],
Theorem 3.1, we conclude that g attains its minimum in M”. Then, from
the Maximum Principle, g is constant. Since g is positive, we have that H,,,
vanishes.

Thus we conclude that H,., = 0. Now, we use Lemma 2.2(b) to conclude
that H; = 0 for j > r + 1 and so that v > n — r. Since H, does not change
sign we have that v = n — r. In particular, we may apply Theorem 5.3 of
[7] to deduce that x (M") is foliated by complete totally geodesic submanifolds
of dimension n — r. 0

Example 3.1. We now describe an example of a 1-minimal hypersurface in
R™! with W nonempty, but v # n — 1.
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Let G = O(p + 1) x O(p + 1) be the standard action in R?*! x RP+!
where p is an integer greater than 1. The orbit space of that action can be
represented by

7 (R¥7*7) = Q= {(x,y) e R} x >0, y >0},

where w(u, v) = (lul, |v]). If y(#) = (x(¢), y(¥)) is a curve in 2, then an
explicit parametrization of the hypersurface M = 7 ~!(y) is given by

ft,a,b) =x(t)P(a) & y()V(b),

where W and & are parametrization of the unit sphere S?.

J. Sato, in [13], Theorem 1.2, classified the profile curve if M = 7~ '(y)
has null scalar curvature. These curves, called, type B are interesting for us.
Such a curve y, is regular, intersects orthogonally one of the half-axes x > 0
or y > 0 and asymptotes one half-straight line y,(¢) = (cos(a)¢, sin(x)t) or
¥, (t) = (sin(a)t, cos(a)t), where ¢ > 0 and

1 3-2p
o = — arccos ,
4 2p—1
when t — +o0.

Let 2(p) = {(f(p), N(p)) be the support function of the immersion f. The
unit normal field is N (¢, a, b) = —y' ()P (a) ® x'(¢t) V(). Using the expression
for £ and N it is possible to verify that h(p) = —u'(¢)(x%(¢) + y*(¢)), where
u = arctan (%)

Moreover, when p > 4, J. Sato also proved in [13], Lemma 2.3, that
u’ # 0 for every orbit associated to a profile curve of the type B. Thus, % or
—h is positive in M, i.e., W is nonempty. In order to finish our example it is
enough to use that

i 13,01

x'y +x'y
[+ (1)?]

Y .
ki=————,i=1,...,p,
EEENCOEE 0L

x/
kj = — j=p+1,....2p,

e+ ()
and thus the rank of the second fundamental form of the immersion is greater
than p, when p > 2. U
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Example 3.2. H. Alencar described in [1] an example of a minimal hyper-
surface in R?" with W nonempty, but the hypersurface is not totally geodesic.
For completeness we will give a sketch of the example.

Let G = SO(m) x SO(m) be the standard action in R” x R™, where m
is an integer greater than 1. The orbit space of that action can be represented by

T(R*)=Q={(x,») eR*%x >0, y=>0},

where 7w (u, v) = (|ul, |v]). If y (¢) = (x(¢), y(¢)) is a curve in €2, then an explicit
parametrization of the hypersurface M = 7 ~!(y) is given by

St a,b) =x()P(a) ® y(O)W (D),

where W and ® are parametrization of the unit sphere S”~!.

H. Alencar, in [1], Theorem 4.1 and 5.1, classified the profile curve if
M = m~'(y) has null mean curvature. These curves called as topological
type A are interesting for us. Such a curve y is regular, intersects orthogonally
one of the half-axes x > 0 or y > 0 and it has asymptote the half-straight line
y(t) = (¢, t), where t > 0, when t — F00.

Let h(p) = (f(p), N(p)) be the support function of the immersion f. The
unit normal field is

N(t,a,b) ==y (O)®(a) ®x" ()W (D).
Using the expression for f and N it is possible to verify that
h(p) = —u' (OO + 2 (0),

where # = arctan (f)

Moreover, when m > 4, H. Alencar also proved in [1], Proposition 4.4, that
u’ # 0 for every orbit associated to a profile curve of the topological type A.
Thus, /& or —4 is positive in M, i.e., W is nonempty. O

Corollary 3.1 (Cor. 1.1 in Introduction). Let M" be a complete Riemannian
manifold and let x : M" — S"t! be an isometric immersion with H, = 0 and
mean curvature Hy # 0 everywhere. There no exists an immersion x such that
the set W is open and nonempty.

Proof. Suppose that I is open and nonempty. Using Theorem 3.1 we have
v = n — 1. On the other hand, as any principal curvature has a sign, because
H, # 0 everywhere, we can apply the Theorem 2 in [9], p. 99, to conclude that
there exists a principal curvature with an opposite sign. But this is impossible,
because v =n — 1. O
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Corollary 3.2 (Cor. 1.2 in Introduction). Let M" be a complete Riemannian
manifold and let x: M" — R"*! be an isometric immersion with Hy = 0
and scalar curvature H, # 0 everywhere. If W is open and nonempty, then
x(M") =S§? x R"2,

Proof. Using Theorem 3.1 we have v = n — 2. Now, we can apply the Theo-
rem 3.4 in [8], p. 11, to conclude that x (M") = S? x R" 2, O

4 r-stability

In this section we will prove the result on r-stable hypersurface with W non-
empty. One has:

Theorem 4.1 (Thm. 1.2 in Introduction). Let M" be a complete and ori-
entable Riemannian manifold and let x : M" — QZH, ¢ < 0, be an isometric
r-minimal immersion and H, # 0 everywhere, r > 1. If W is nonempty, then x
is r-stable.

Proof. Let py € W and X be the position vector with origin py. Since py €
W, we can choose an orientation N in M" for which the support function g is
positive. From Lemma 2 in [2] we have L,(g) — (r 4+ 2)S,12¢ = 0, provided
Hr+1 = 0

First, let us consider H, > 0. In this case, the operator L, is elliptic.

In [10], Proposition 3.13, M.F. Elbert proved that operator of type L, + ¢,
where ¢ is a differentiable function on M”, is positive if and only if there is a
positive differentiable function f on M” such that L, f + ¢qf = 0. Since

Jrg == Lrg - (I" + 2)Sr+2g = 07
the operator J, is positive definite, i.e.,

f (LVAVO + G +2)S42/7)dV >0,
M

for every nonzero function f. Since ¢ - H, < 0 we have:

f (LVLVS) +(+ 282 —c(n —1)S) f2)dV > 0,
M

for every nonzero function f. Then

Jr Lr (l" 2)Sr+2 + c(n - r)Sr
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is positive definite, i.e., x is r-stable.

Finally, consider H, < 0. In this case, the operator (—L,) is elliptic.

In [10], Proposition 3.13, M.F. Elbert proved that operator of type L, + ¢,
where ¢ is a differentiable function on M", is negative if and only if there is a
positive differentiable function f on M” such that L, f + qf = 0. Since

Jg=Lg—(r+2)S1¢=0,

the operator J, is negative definite, i.e.,

f (TVL V) + (42422 dV <0,
M

for every nonzero function f. Since ¢ - H, > 0 we have:

/ (LVLV) +((r+2)S42 — c(n —1)S,) f7)dV <0,
M

for every nonzero function f. Then

Jr = Lr - (F +2)Sr+2 + C(}’l - r)Sr

is negative definite, i.e., x is r-stable. ]
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