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Hypersurfaces with null higher order
mean curvature

Hilário Alencar∗ and Márcio Batista

Abstract. A hypersurface Mn immersed in a space form is r -minimal if its (r + 1)th-
curvature (the (r + 1)th elementary symmetric function of its principal curvatures)
vanishes identically. Let W be the set of points which are omitted by the totally geo-
desic hypersurfaces tangent to M . We will prove that if an orientable hypersurface Mn

is r -minimal and its r th-curvature is nonzero everywhere, and the set W is nonempty
and open, then Mn has relative nullity n − r . Also we will prove that if an orientable
hypersurface Mn is r -minimal and its r th-curvature is nonzero everywhere, and the
ambient space is euclidean or hyperbolic and W is nonempty, then Mn is r -stable.
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Mathematical subject classification: 53A10, 53C42.

1 Introduction

Let Qn+1
c be a (n + 1)-dimensional, simply-connected, complete Riemannian

manifold with constant sectional curvature c. Let Mn be a n-dimensional con-
nected manifold, and x : Mn → Qn+1

c be an isometric immersion. For every
point p ∈ Mn , let (Qn

c )p be the totally geodesic hypersurface of Qn+1
c tangent

to x(Mn) at x(p).
We will denote by

W = Qn+1
c −

⋃

p∈M

(Qn
c )p,

the set of points which are omitted by the totally geodesic hypersurfaces tangent
to x(Mn). We will work with an immersion whose set W is nonempty. In this
direction, T. Hasanis and D. Koutroufiots, see [11], proved that

∗The author is partially supported by CNPq.
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Theorem A. Let x : M2 → Q3
c be a complete minimal immersion with c ≥ 0.

If W is nonempty, then x is totally geodesic.

The proof is heavily based on the techniques of two dimensional manifolds.
Now, let x : Mn → Qn+1

c be an isometric immersion. In [4], H. Alencar and
K. Frensel extended the result above assuming an extra condition. In fact, they
proved that

Theorem B. Let Mn be a complete Riemannian manifold and x : Mn → Qn+1
c

be an isometric minimal immersion. If W is open and nonempty, then x is totally
geodesic.

On the other hand, H. Alencar, in [1], provides examples of non-totally geo-
desic minimal hypersurfaces in R2n , n ≥ 4, with nonempty W , see the Exam-
ple 3.2. These examples show that, in higher dimensions, it is necessary to add
an extra hypothesis. In Theorem B, the extra condition is W open.

The aim of this work is to extend Theorem B for other immersions. In order
to do that, we will introduce some definitions.

Let Mn be an oriented Riemannian manifold and x : Mn → Qn+1
c be an

isometric immersion. Considering the symmetric functions Sr of the principal
curvatures k1, . . . , kn:

Sr =
∑

i1<∙∙∙<ir

ki1 ∙ ∙ ∙ kir (1 ≤ r ≤ n),

the r -mean curvature Hr of x is defined by
(n

r

)
Hr = Sr .

It is convenient to introduce the Newton transformations defined inductively
by

T0 = I, Tr = Sr I − ATr−1.

Here I is the identity matrix and A is the shape operator associated to x .

We say that x : Mn → Qn+1
c is r -minimal if Hr+1 = 0, i.e., x is a critical

point of the variational problem of minimizing the integral

Ar (x) =
∫

D
Fr

(
S1, . . . Sr

)
dV,

where

F0 = 1, F1 = S1, . . . , Fr = Sr +
c(n − r + 1)

r − 1
Fr−2,

2 ≤ r ≤ n − 1.
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Associated to the second variation formula of Ar are the second order differ-
ential operators

Lr f = tr
(
Tr∇

2 f
)
,

and
Jr f = Lr f − (r + 2)Sr+2Sr+2 f + c(n − r)Sr f,

where f is a differentiable function and ∇2 f is the hessian of f .

When the ambient space is a space form, H. Rosenberg in [12] proved that
Lr f = div(Tr∇ f ), where ∇ f is the gradient in the induced metric, and thus
Lr is self-adjoint operator.

Thus, a bilinear symmetric form Ir can be defined by

Ir ( f, g) = −
∫

M
f Jr g dV,

where f and g are differentiable functions on M .

In [3], H. Alencar, M. do Carmo and M.F Elbert defined stability for r -min-
imal immersions:

Definition 1.1. Let D be a domain with compact closure and piecewise
smooth boundary. D is r -stable if Ir ( f, f ) > 0 for all f ∈ C∞

c (D) or if
Ir ( f, f ) < 0 for all f ∈ C∞

c (D). D is r - unstable if there exists a function
f ∈ C∞

c (D) such that Ir ( f, f ) < 0 and there exists a function g ∈ C∞
c (D) such

that Ir (g, g) > 0.

Now we recall the definition of relative nullity. Consider ν(p) = dim Ker(A),
where A is the shape operator associated to the second fundamental form in p.
The relative nullity is ν = minp∈Mn ν(p).

Our first result reads as follows:

Theorem 1.1. Let Mn be a complete and orientable Riemannian manifold
and let x : Mn → Qn+1

c be an isometric r -minimal immersion and Hr 6= 0
everywhere, r ≥ 1. If W is open and nonempty, then ν = n − r . In particu-
lar, x(Mn) is foliated by complete totally geodesic submanifolds of dimension
n − r .

We observe that there exist examples of 1-minimal hypersurfaces with
H1 6= 0 everywhere in R2n , n ≥ 5, with nonempty W but ν 6= n − 1, see the
Example 3.1. These examples show that is necessary to add an extra hypothesis.
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Corollary 1.1. Let Mn be a complete Riemannian manifold and let
x : Mn → Sn+1 be an isometric immersion with H2 = 0 and mean curva-
ture H1 6= 0 everywhere. There no exists an immersion x such that the set W is
open and nonempty.

Corollary 1.2. Let Mn be a complete Riemannian manifold and let
x : Mn → Rn+1 be an isometric immersion with H3 = 0 and scalar curva-
ture H2 6= 0 everywhere. If W is open and nonempty, then x(Mn) = S2 ×Rn−2.

The second result is the following:

Theorem 1.2. Let Mn be a complete and orientable Riemannian manifold, and
let x : Mn → Qn+1

c , c ≤ 0, be an isometric r -minimal immersion and Hr 6= 0
everywhere, r ≥ 1. If W is nonempty, then x is r -stable.

2 Support function in space of constant curvature

Let us introduce the notions of position vector and support function in Qn+1
c .

Consider an isometric immersion x : Mn → Qn+1
c . Let sc be a solution of the

ordinary differential equation y′′ + cy = 0, with initial conditions y(0) = 0 and
y′(0) = 1. Then

sc(r) =






r , if c = 0,

sin(
√

cr)
√

c
, if c > 0,

sinh(
√

−cr)
√

−c
, if c < 0.

For every point p0 ∈ Qn+1
c , we will consider the function r(.) = d(., p0),

where d is the distance function of Qn+1
c , and we will denote by grad r the

gradient of the function r in Qn+1
c .

Using the analogy with the Euclidean Space, the vector field X (p) =
sc(r) grad r will be called position vector with origin p0. When c > 0, the
distance function is differentiable in Qn+1

c − {p0, −p0}. Therefore, in this case,
the position vector with origin p0 is differentiable in Qn+1

c − {p0, −p0}.
Let Mn be an oriented Riemannian manifold, x : Mn → Qn+1

c an isometric
immersion, and N a unit normal vector field of x . The function g : M → R
defined by g = 〈X, N 〉, where X is the position vector with origin p0, will be
called the support function of the immersion x . In the case c > 0, this function
is differentiable if x(M) ⊆ Qn+1

c − {p0, −p0}.
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For the case c = 0, |g(p)| is the distance from p0 to the tangent hyperplane to
x(Mn) at x(p). In [4], the authors give a geometric interpretation of the support
function in the case c 6= 0. We will describe the interpretation below.

In the case c > 0: We will suppose that Qn+1
c is the sphere of radius 1√

c in

Rn+2. Then |g(p)| is the euclidean distance from the point p0 to the hyperplane
which contains the totally geodesic hypersurface tangent to x(Mn) at x(p). In
fact, since

p0 = cos(
√

cr(p))p −
sin(

√
cr(p))

√
c

grad r(p),

we have

〈p0, N (p)〉 = −
sin(

√
cr(p))

√
c

〈grad r(p), N (p)〉 = −g(p).

So, |g(p)| = |〈p0, N (p)〉|.

In the case c < 0: Let Ln+2 be the euclidean space Rn+2 endowed with the
Lorenzian metric

〈〈u, v〉〉 = u1v1 + . . . + un+1vn+1 − un+2vn+2.

Let Hn+1(c) be the hypersurface of Ln+2 given by

Hn+1(c) =
{
v ∈ Ln+2; vn+2 > 0, 〈〈v, v〉〉 =

1

c

}
.

It is well know that Hn+1(c) with the induced metric is a model of hyperbolic
space Qn+1

c .

We can assume, without loss of generality, that p0 =
(
0, 0, . . . , 0, 1√

c

)
.

In this case, the euclidean distance from the point p0 to the hyperplane that
passes through the origin ofRn+2 and contains the totally geodesic hypersurface,
(Qn

c )p, tangent to x(Mn) at x(p), is given by

|g(p)|
√

1 + 2g(p)2
.

In fact, since

p0 = cosh(
√

−cr(p))p −
sinh(

√
−cr(p))

√
−c

grad r(p),
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we have that
〈〈p0, N (p)〉〉 = −g(p).

Let N (p) =
(
N1, . . . , Nn+1, Nn+2

)
. Then

N =
1

√
1 + 2N 2

n+2

∙ N ,

is a unit vector in Rn+2 orthogonal to the hyperplane that passes through the
origin of Rn+2 and contains (Qn

c )p. Therefore,

|〈q, N (p)〉| =

∣
∣
∣
∣
∣
∣

−Nn+2√
1 + 2N 2

n+2

∣
∣
∣
∣
∣
∣
=

|g(p)|
√

1 + 2g(p)2
,

and this concludes the geometric interpretation.

Lemma 2.1. Let x : Mn → Qn+1
c be an isometric immersion, and 0 ≤ r <

n − 1, p ∈ Mn .

(a) If Sr+1(p) = 0, then Tr is semi-definite at p;

(b) If Sr+1(p) = 0 and Sr+2(p) 6= 0, then Tr is definite at p.

Proof. See [5], Proposition 2.8, p. 192. �

An other important result is:

Lemma 2.2. Let x : Mn → Qn+1
c be an isometric immersion and p ∈ Mn .

(a) For 1 ≤ r < n, one has H 2
r ≥ Hr−1 Hr+1. Moreover, if equality happens

for r = 1 or for some 1 < r < n, with Hr+1 6= 0 in this case, then p is
umbilical point;

(b) If, for some 1 ≤ r < n, one has Hr = Hr+1 = 0, then Hj = 0 for all
r ≤ j ≤ n. In particular, at most r − 1 of the principal curvatures are
different from zero.

Proof. See [6], Proposition 2.1, p. 176. �

The result below is standard, for completeness we will give a proof.
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Lemma 2.3. Let x : Mn → Qn+1
c be an isometric immersion. The operator Lr

associated to the immersion x is elliptic if, and only if, Tr is positive definitive.

Proof. Let
{

∂
∂xi

}
be a local frame of Mn at p. By direct computation, we have

locally the expression of Lr :

Lr f (p) =
∑

i, j,k

gk j tik
∂2 f

∂xi∂x j
−

∑

i, j,k,l

gk j tik0
l
i j

∂ f

∂xl
,

where gi j is the metric of Mn , 0k
i j are the Christoffel symbols and

ti j =
〈
Tr

(
∂

∂xi

)
,

∂

∂x j

〉
.

From the above local expression, it is easy to conclude that the linear operator
Lr is elliptic if, and only if, Tr is positive definitive. �

Corollary 2.1. Let x : Mn → Qn+1
c be an isometric immersion. If Tr is negat-

ive defined, then the operator −Lr associated to the immersion x is elliptic. �

3 r - minimal hypersurface with W nonempty

In this section we will prove the result on r -minimal hypersurface with W
nonempty and open.

Theorem 3.1 (Thm. 1.1 in Introduction). Let Mn be a complete and ori-
entable Riemannian manifold and let x : Mn → Qn+1

c be an isometric r -minimal
immersion and Hr 6= 0 everywhere, r ≥ 1. If W is open and nonempty, then
ν = n − r . In particular, x(Mn) is foliated by complete totally geodesic sub-
manifolds of dimension n − r .

Proof. Let x : Mn → Qn+1
c be an isometric r -minimal immersion, i.e.,

Hr+1 = 0 in M . Let q ∈ W and X be the position vector with origin q.
Fix an orientation, N , such that the support function g(p) = 〈X (p), N (p)〉 is
positive.

In [2], Lemma 2, the authors proved that

Lr g = −〈∇Sr+1, X T 〉 − (r + 1)Sr+1θc − (S1Sr+1 − (r + 2)Sr+2)g,

where θc = s ′
c.
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By using the equality with Hr+1 = 0 we have

Lr g = (r + 2)Sr+2g. (1)

Using Lemma 2.1(a) we have that Tr is semi-definite. Since Hr does not
vanish, we have that Hr is positive or negative, because cr Hr = tr(Tr ), where
cr = (n − r)

(n
r

)
. Now we use Lemma 2.2 and obtain:

0 = H 2
r+1 ≥ Hr Hr+2. (2)

Using the information above, we claim that Hr+2 ≡ 0.

In fact, first we assume that Hr+2 ≥ 0. Using (2) and hypothesis we conclude
that Hr < 0 and thus Tr is negative defined. Applying Corollary 2.1 we have
that −Lr is elliptic. Whereas from (1) we have

(−Lr )g ≤ 0.

Now, following exactly the proof given by H. Alencar and K. Frensel in [4],
Theorem 3.1, we conclude that g attains its minimum in Mn . Then, from
the Maximum Principle, g is constant. Since g is positive, we have that Hr+2

vanishes.
Second, we assume Hr+2 ≤ 0. Using (2) and Hr 6= 0 we conclude that

Hr > 0 and thus Tr is positive defined. Applying Lemma 2.3 we have that Lr

is elliptic. Whereas from (1) we have

Lr g ≤ 0.

Now, following exactly the proof given by H. Alencar and K. Frensel in [4],
Theorem 3.1, we conclude that g attains its minimum in Mn . Then, from
the Maximum Principle, g is constant. Since g is positive, we have that Hr+2

vanishes.
Thus we conclude that Hr+2 ≡ 0. Now, we use Lemma 2.2(b) to conclude

that Hj = 0 for j ≥ r + 1 and so that ν ≥ n − r . Since Hr does not change
sign we have that ν = n − r . In particular, we may apply Theorem 5.3 of
[7] to deduce that x(Mn) is foliated by complete totally geodesic submanifolds
of dimension n − r . �

Example 3.1. We now describe an example of a 1-minimal hypersurface in
Rn+1 with W nonempty, but ν 6= n − 1.
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Let G = O(p + 1) × O(p + 1) be the standard action in Rp+1 × Rp+1,
where p is an integer greater than 1. The orbit space of that action can be
represented by

π
(
R2p+2

)
= � =

{
(x, y) ∈ R2; x ≥ 0, y ≥ 0

}
,

where π(u, v) = (|u|, |v|). If γ (t) = (x(t), y(t)) is a curve in �, then an
explicit parametrization of the hypersurface M = π−1(γ ) is given by

f (t, a, b) = x(t)8(a) ⊕ y(t)9(b),

where 9 and 8 are parametrization of the unit sphere Sp.

J. Sato, in [13], Theorem 1.2, classified the profile curve if M = π−1(γ )

has null scalar curvature. These curves, called, type B are interesting for us.
Such a curve γ , is regular, intersects orthogonally one of the half-axes x ≥ 0
or y ≥ 0 and asymptotes one half-straight line γ1(t) = (cos(α)t, sin(α)t) or
γ2(t) = (sin(α)t, cos(α)t), where t ≥ 0 and

α =
1

4
arccos

(
3 − 2p

2p − 1

)
,

when t → ±∞.

Let h(p) = 〈 f (p), N (p)〉 be the support function of the immersion f . The
unit normal field is N (t, a, b) = −y′(t)8(a)⊕ x ′(t)9(b). Using the expression
for f and N it is possible to verify that h(p) = −u′(t)(x2(t) + y2(t)), where
u = arctan

( y
x

)
.

Moreover, when p ≥ 4, J. Sato also proved in [13], Lemma 2.3, that
u′ 6= 0 for every orbit associated to a profile curve of the type B. Thus, h or
−h is positive in M , i.e., W is nonempty. In order to finish our example it is
enough to use that

k0 = −
x ′′y′ + x ′y′′

[
(x ′)2 + (y′)2

]3/2 ,

ki =
y′

x
√

(x ′)2 + (y′)2
, i = 1, . . . , p,

k j = −
x ′

y
√

(x ′)2 + (y′)2
, j = p + 1, . . . , 2p,

and thus the rank of the second fundamental form of the immersion is greater
than p, when p ≥ 2. �
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Example 3.2. H. Alencar described in [1] an example of a minimal hyper-
surface in R2m with W nonempty, but the hypersurface is not totally geodesic.
For completeness we will give a sketch of the example.

Let G = SO(m) × SO(m) be the standard action in Rm × Rm , where m
is an integer greater than 1. The orbit space of that action can be represented by

π
(
R2m

)
= � =

{
(x, y) ∈ R2; x ≥ 0, y ≥ 0

}
,

where π(u, v) = (|u|, |v|). If γ (t) = (x(t), y(t)) is a curve in �, then an explicit
parametrization of the hypersurface M = π−1(γ ) is given by

f (t, a, b) = x(t)8(a) ⊕ y(t)9(b),

where 9 and 8 are parametrization of the unit sphere Sm−1.
H. Alencar, in [1], Theorem 4.1 and 5.1, classified the profile curve if

M = π−1(γ ) has null mean curvature. These curves called as topological
type A are interesting for us. Such a curve γ is regular, intersects orthogonally
one of the half-axes x ≥ 0 or y ≥ 0 and it has asymptote the half-straight line
γ (t) = (t, t), where t ≥ 0, when t → ±∞.

Let h(p) = 〈 f (p), N (p)〉 be the support function of the immersion f . The
unit normal field is

N (t, a, b) = −y′(t)8(a) ⊕ x ′(t)9(b).

Using the expression for f and N it is possible to verify that

h(p) = −u′(t)(x2(t) + y2(t)),

where u = arctan
( y

x

)
.

Moreover, when m ≥ 4, H. Alencar also proved in [1], Proposition 4.4, that
u′ 6= 0 for every orbit associated to a profile curve of the topological type A.
Thus, h or −h is positive in M , i.e., W is nonempty. �

Corollary 3.1 (Cor. 1.1 in Introduction). Let Mn be a complete Riemannian
manifold and let x : Mn → Sn+1 be an isometric immersion with H2 = 0 and
mean curvature H1 6= 0 everywhere. There no exists an immersion x such that
the set W is open and nonempty.

Proof. Suppose that W is open and nonempty. Using Theorem 3.1 we have
ν = n − 1. On the other hand, as any principal curvature has a sign, because
H1 6= 0 everywhere, we can apply the Theorem 2 in [9], p. 99, to conclude that
there exists a principal curvature with an opposite sign. But this is impossible,
because ν = n − 1. �
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Corollary 3.2 (Cor. 1.2 in Introduction). Let Mn be a complete Riemannian
manifold and let x : Mn → Rn+1 be an isometric immersion with H3 = 0
and scalar curvature H2 6= 0 everywhere. If W is open and nonempty, then
x(Mn) = S2 × Rn−2.

Proof. Using Theorem 3.1 we have ν = n − 2. Now, we can apply the Theo-
rem 3.4 in [8], p. 11, to conclude that x(Mn) = S2 × Rn−2. �

4 r - stability

In this section we will prove the result on r -stable hypersurface with W non-
empty. One has:

Theorem 4.1 (Thm. 1.2 in Introduction). Let Mn be a complete and ori-
entable Riemannian manifold and let x : Mn → Qn+1

c , c ≤ 0, be an isometric
r -minimal immersion and Hr 6= 0 everywhere, r ≥ 1. If W is nonempty, then x
is r -stable.

Proof. Let p0 ∈ W and X be the position vector with origin p0. Since p0 ∈
W , we can choose an orientation N in Mn for which the support function g is
positive. From Lemma 2 in [2] we have Lr (g) − (r + 2)Sr+2g = 0, provided
Hr+1 = 0.

First, let us consider Hr > 0. In this case, the operator Lr is elliptic.

In [10], Proposition 3.13, M.F. Elbert proved that operator of type Lr + q,
where q is a differentiable function on Mn , is positive if and only if there is a
positive differentiable function f on Mn such that Lr f + q f = 0. Since

Jr g = Lr g − (r + 2)Sr+2g = 0,

the operator Jr is positive definite, i.e.,
∫

M

(
〈Tr∇ f, ∇ f 〉 + (r + 2)Sr+2 f 2

)
dV > 0,

for every nonzero function f . Since c ∙ Hr ≤ 0 we have:
∫

M

(
〈Tr∇ f, ∇ f 〉 + ((r + 2)Sr+2 − c(n − r)Sr ) f 2

)
dV > 0,

for every nonzero function f . Then

Jr Lr (r 2)Sr+2 + c(n − r)Sr
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is positive definite, i.e., x is r -stable.
Finally, consider Hr < 0. In this case, the operator (−Lr ) is elliptic.
In [10], Proposition 3.13, M.F. Elbert proved that operator of type Lr + q,

where q is a differentiable function on Mn , is negative if and only if there is a
positive differentiable function f on Mn such that Lr f + q f = 0. Since

Jr g = Lr g − (r + 2)Sr+2g = 0,

the operator Jr is negative definite, i.e.,
∫

M

(
〈Tr∇ f, ∇ f 〉 + (r + 2)Sr+2 f 2

)
dV < 0,

for every nonzero function f . Since c ∙ Hr ≥ 0 we have:
∫

M

(
〈Tr∇ f, ∇ f 〉 + ((r + 2)Sr+2 − c(n − r)Sr ) f 2

)
dV < 0,

for every nonzero function f . Then

Jr = Lr − (r + 2)Sr+2 + c(n − r)Sr

is negative definite, i.e., x is r -stable. �
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