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Abstract. We classify the nonextendable immersed O(m) × O(n)-invariant minimal hypersurfaces
in the Euclidean space R

m+n , m, n � 3, analyzing also whether they are embedded or stable. We
show also the existence of embedded, complete, stable minimal hypersurfaces in R

m+n , m + n � 8,
m, n � 3 not homeomorphic to R

m+n−1 that are O(m) × O(n)-invariant.
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1. Introduction and Statement of Results

The study of constant mean curvature hypersurfaces in Euclidean spaces, partic-
ularly the minimal surfaces, has a very long history. One important issue in this
area is the construction of examples providing a testing ground for conjectures and
theorems, since the work due to Hsiang and Lawson [1].

G-invariant constant mean curvature hypersurfaces, that is, invariant under the
action of some isometry group G, have proved to be manageable and useful. We
may quote the classic work [2], studying rotational (i.e., O(2)-invariant) constant
mean curvature surfaces, or the analysis and classification of O(n)-invariant minimal
hypersurfaces in space forms carried out in [3].

Following the classification of low cohomogeneity isometry groups established
by Hsiang and Lawson [1], the next step was to study the O(m) × O(n)-invariant
hypersurfaces with constant mean curvature. For example, Hsiang et al. [4] con-
structed a family of such hypersurfaces for m = n.
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Techniques developed by Bombieri et al. [5] allowed them to show the existence
of complete O(m)×O(n)-invariant minimal hypersurfaces. Using these techniques,
Alencar [6] analyzed these hypersurfaces in the case m = n and classified them for
m � 3. It is worth noting that these ideas have been successfully applied also to
the null scalar curvature case; see [7, 8].

The aim of this paper is to extend the classification theorems proved in [6] to
arbitrary m, n. To state our results we must fix some notations.

We will use the standard action of O(m) × O(n) over R
m+n = R

m × R
n . In

this case, the orbit space can be identified with Q = {(x, y); x � 0, y � 0}, in
such a way that every interior point of Q corresponds to a principal orbit given as
the product of spheres S

m−1(x) × S
n−1(y). We define a hypersurface M of R

m+n

invariant under this action by giving a generating profile curve γ (t) = (x(t), y(t))
contained in Q, so that M is parametrized by

x̄(t, φ1, . . . , φm−1, ψ1, . . . , ψn−1)

= (x(t)�(φ1, . . . , φm−1), y(t)�(ψ1, . . . , ψn−1)), (1)

where � and � are orthogonal parametrizations of a unit sphere of the correspond-
ing dimension.

Figures 1 and 2 exhibit all cases of profile curves associated to com-
plete immersed O(m) × O(n)-invariant minimal hypersurfaces, characterized in
Theorems 1.1 and 1.2.

Figure 1. Some examples of profile curves for m +n � 7. Numbering corresponds to that in Theorem 1.1.

Figure 2. Some examples of profile curves for m +n � 8. Numbering corresponds to that in Theorem 1.2.
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THEOREM 1.1. Given integers m, n � 3 such that m + n � 7, every non-
extendable O(m) × O(n)-invariant minimal hypersurface M ⊂ R

m+n falls in only
one of the following types:

(1) M is a cone Cm,n with vertex at the origin, generated by a ray y =√
n−1
m−1 x.

(2) M is an immersed complete hypersurface which intersects itself and Cm,n in-
finitely countable times, approaching this cone asymptotycally.

(3) M is an embedded complete hypersurface intersecting Cm,n infinitely count-
able times, approaching this cone asymptotycally and intersecting orthogonally
R

m × {0} or {0} × R
n.

THEOREM 1.2. Given integers m, n � 3 such that m + n � 8, every non-
extendable O(m) × O(n)-invariant minimal hypersurface M ⊂ R

m+n falls in only
one of the following types:

(1) M is a cone Cm,n with vertex at the origin, generated by a ray y =√
n−1
m−1 x.

(2) M is an immersed complete hypersurface which does not intersect Cm,n , being
doubly asymptotic to this cone.

(3) M is an embedded complete hypersurface which intersects Cm,n once, being
doubly asymptotic to this cone.

(4) M is an embedded complete hypersurface which does not intersect Cm,n , being
asymptotic to this cone and intersecting orthogonally R

m × {0} or {0} × R
n.

In the last part of this paper we discuss the stability of these hypersurfaces,
obtaining the following results.

THEOREM 1.3. Let m, n � 3 and m + n � 7. Any complete O(m) × O(n)-
invariant minimal hypersurface M in R

m+n has infinite index.

THEOREM 1.4. Let m, n � 3 and m + n � 8. The unique stable complete
O(m) × O(n)-invariant minimal hypersurfaces are those of the type (4) given in
Theorem 1.2.

As a consequence of these classification results, we obtain examples of complete,
stable minimal hypersurfaces homeomorphic to R

m × S
n−1 or to S

m−1 × R
n . Our

following existence result should be compared with the theorem on the structure of
this kind of hypersurfaces obtained by (see [9]).

THEOREM 1.5. There exist embedded, complete, stable minimal hypersurfaces
in R

N , for N � 8, not homeomorphic to R
N−1.

2. The Minimal Hypersurface Equation

Using the parametrization x̄ given in (1) and the normal vector
N (t, φ1, . . . , φm−1, ψ1, . . . , ψn−1)

= (−y′(t)�(φ1, . . . , φm−1), x ′(t)�(ψ1, . . . , ψn−1)),
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it can be shown that the principal curvatures λ0, λi , λ j , i = 1, . . . , m − 1, j =
m, . . . , m + n − 2 associated to M are

λ0 = −x ′′y′ + x ′y′′

[(x ′)2 + (y′)2]3/2
,

λi = y′

x
√

(x ′)2 + (y′)2
, i = 1, 2, . . . , m − 1,

λ j = −x ′

y
√

(x ′)2 + (y′)2
, j = m, . . . , m + n − 2.

The mean curvature of the hypersurface is given by

nH =
m+n−2∑

k=0

λk = −x ′′y′ + y′′x ′

[(x ′)2 + (y′)2]3/2
+ (m − 1)y′

x[(x ′)2 + (y′)2]1/2
− (n − 1)x ′

y[(x)2 + (y′)2]1/2
.

Thus, to obtain a minimal hypersurface of this kind is equivalent to solve the
following second-order differential equation:

−x ′′y′ + y′′x ′

(x ′)2 + (y′)2
+ (m − 1)y′

x
− (n − 1)x ′

y
= 0. (2)

Note that every curve γ (t) = (x(t), y(t)) solving this last equation generates a
whole family of minimal hypersurfaces, since every homothetic curve γc(t) =
(c x(t), c y(t)) is also a solution.

Since γ is a regular curve we may parametrize it by arc length. From now on
we do that. Then (2) becomes

−x ′′y′ + y′′x ′ + (m − 1)y′y − (n − 1)x ′x
xy

= 0. (3)

Note that x ′′ and y′′ may be expressed explicitly in terms of x, x ′, y, y′, as follows:
since x ′2 + y′2 = 1, we obtain x ′x ′′ + y′y′′ = 0. This equation and (3) may be
seen as a system of two linear equations in x ′′ and y′′ with nonzero determinant and
solutions given by

x ′′ = − (m − 1)y′y − (n − 1)x ′x
xy

y′

and

y′′ = − (m − 1)y′y − (n − 1)x ′x
xy

x ′.

To close this section, we may suppose that y = y(x) in Equation (3), which
becomes

d2 y

dx2
= − (m − 1)y dy

dx − (n − 1)x

xy

(
1 +

(
dy

dx

)2)
. (4)
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On the other hand, if x = x(y), Equation (3) can be written as

d2x

dy2
= −

(m − 1)y − (n − 1) dx
dy x

xy

(
1 +

(
dx

dy

)2)
. (5)

Expressions (4) and (5) show that our profile curves do not have singularities. In
the next section we will perform a useful transformation on this equation.

3. The Associated Vector Field

Following [5, 6] (see also [7, 8]), we define the Bombieri–de Giorgi–Gusti
coordinate transformation (x, y) �→ (u, v) given by

tan u = y

x
, tan v = y′

x ′ , (6)

defined for (u, v) ∈ D̄, where

D =
(

0,
π

2

)
× (−π, π ).

It is easy to see that

u′ = y′x − x ′y
x2 + y2

and v′ = −x ′′y′ + y′′x ′.

Multiplying (3) by x2 y2

(x2+y2)3/2 u′ and using this change of coordinates, we get

v′[−cosu sin u sin(u − v)] + u′[(m − 1) sin v sin u − (n − 1) cos v cos u] = 0.

This last equation provides us with a system of ordinary differential equations
for u, v and a vector field X (u, v) = (X1(u, v), X2(u, v)) defined in D̄ given
by

X1(u, v) = u′ = cos u sin u sin(u − v),

X2(u, v) = v′ = (m − 1) sin v sin u − (n − 1) cos v cos u.
(7)

LEMMA 3.1. The vector field X has the following properties:

(1) X1 vanishes along the lines u = 0, u = π/2, v = u and v = u − π .
(2) X2 vanishes along the graphs of the smooth functions

v1(u) = arctan

(
n − 1

m − 1
cot u

)
,

v2(u) = arctan

(
n − 1

m − 1
cot u

)
− π ;

defined for u ∈ [0, π/2]. Moreover, v1 and v2 are decreasing and we
have
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(a) limu→0 v1(u) = π/2 and limu→ π
2
v1(u) = 0.

(b) limu→0 v2(u) = −π/2 and limu→ π
2
v2(u) = −π .

(c) If n < m (n = m, n > m), then v1 and v2 are concave up (linear, concave
down).

(d) v′
1(0) = v′

2(0) = −m−1
n−1 and v′

1(π
2 ) = v′

2

(
π
2

) = − n−1
m−1 .

Proof. The proof is a straightforward calculation, solving directly X1 = 0 and
X2 = 0 in (7). For (c) and (d), note that for i = 1, 2 we have

dvi

du
= −

n−1
m−1

sin2 u + (
n−1
m−1

)2
cos2 u

< 0

and

d2vi

du2
= 2 n−1

m−1 sin u cos u
(

sin2 u + (
n−1
m−1

)2
cos2 u

)2

(
1 −

(
n − 1

m − 1

)2)
.

The graphs of the possible types of v1 and v2 are shown in Figure 3.
We obtain the singular points of X by intersecting the graphs of the functions

v = u, v = u − π with those of v1(u) and v2(u); namely,

COROLLARY 3.2. The singular points of the vector field X in D̄ = [0, π
2 ] ×

[−π, π ] are p1 = (0, −π
2 ), p2 = (0, π

2 ), p3 = (π
2 , −π ), p4 = (π

2 , 0), p5 = (π
2 , π ),

and p6 = (α, α), p7 = (α, α − π ), where α = arctan
√

n−1
m−1 ∈ (0, π/2).

Due to the continuity of the vector field X we have the next result.

Figure 3. The graphs of the functions v1 = v1(u) and v2 = v2(u).
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COROLLARY 3.3. The vector field X also satisfies

X (0, v) =






(0, X+
2 ) for v ∈

(
−π, −π

2

)
;

(0, X−
2 ) for v ∈

(
−π

2
,
π

2

)
;

(0, X+
2 ) for v ∈

(
π

2
, π

)
.

X

(
π

2
, v

)
=

{
(0, X−

2 ) for v ∈ (−π, 0);

(0, X+
2 ) for v ∈ (0, π ).

X (u, u) =
{

(0, X−
2 ) for 0 < u < α;

(0, X+
2 ) for α < u <

π

2
.

X (u, u − π ) =
{

(0, X+
2 ) for 0 < u < α;

(0, X−
2 ) for α < u <

π

2
.

X (u, v1(u)) =
{

(X−
1 , 0) for 0 < u < α;

(X+
1 , 0) for α < u <

π

2
.

X (u, v2(u)) =
{

(X−
1 , 0) for 0 < u < α;

(X+
1 , 0) for α < u <

π

2
.

where X+
i > 0, while X−

i < 0.

PROPOSITION 3.4. For any integers m, n > 0, the singular points p1, p2, p3, p4

and p5 of the vector field X are saddle points. If m + n � 7, p6 is an unstable
(repulsor) focus and p7 is a stable (attractor) focus. If m + n � 8 then p6 is an
unstable node and p7 is a stable node.

Proof. The linear part of X is given by DX p = (ai j ), where

a11 = cos 2u sin(u − v) + cos u sin u cos(u − v),
a12 = −cos u sin u cos(u − v),
a21 = (m − 1) sin v cos u + (n − 1) cos v sin u,

a22 = (m − 1) cos v sin u + (n − 1) sin v cos u,

and, therefore,

– DX p1 =
( −1 0

m − 1 n − 1

)

– DX p2 =
(

1 0

m − 1 −(n − 1)

)
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– DX p3 =
(

1 0

−(n − 1) −(m − 1)

)
,

– DX p4 =
( −1 0

n − 1 m − 1

)
,

– DX p5 =
(

1 0

−(n − 1) −(m − 1)

)
.

These equalities prove the first claiming of the proposition. For p6 = (α, α), α ∈
(0, π/2), we have cos α > 0, sin α > 0 and

DX p6 = sin α cos α

(
1 −1

m + n − 2 m + n − 2

)
.

If we set β = m + n − 2, then it suffices to calculate the eigenvalues of

A =
(1 −1

β β

)

that are given by

µ1 = 1
2

[
β + 1 +

√
(β + 1)2 − 8β

]

and

µ2 = 1
2

[
β + 1 −

√
(β + 1)2 − 8β

]
.

This expression shows that p6 is a repulsor point.
Similarly, for p7 = (α, α − π ) we have

DX p7 = sin α cos α

(−1 1

−β −β

)
.

The eigenvalues of the matrix in this expression are given by

ν1 = − 1
2

[
β + 1 +

√
(β + 1)2 − 8β

]

and

ν2 = − 1
2

[
β + 1 −

√
(β + 1)2 − 8β

]
.

This proves that p7 is an attractor point.
To finish the proof, we note that the discriminant (β +1)2 −8β is negative if and

only if β < 3 + 2
√

2. Therefore, µ1,2 are real numbers if and only if m + n � 8,
which ends the proof of the proposition.
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We now analyze the behavior of X in the regions D+
1 , D+

2 , D−
1 , D−

2 defined by

D+
1 =

(
0,

π

2

)
×

(
0,

π

2

)
,

D+
2 =

(
0,

π

2

)
×

(
π

2
, π

)
,

D−
1 =

(
0,

π

2

)
×

(
−π

2
, 0

)
,

D−
2 =

(
0,

π

2

)
×

(
−π, −π

2

)
.

LEMMA 3.5. For any integers m,n � 3, X does not have periodic orbits in any
of the regions D+

1 , D−
2 , D−

1 , D+
2 .

Proof. First note that in D+
1 , the functions sin u, cos u, sin v, and cos v are

positive. Calculating the divergence of the vector field X , we have

Div X = [3 cos2 u + (m − 2)] sin u cos v + [3 sin2 u + (n − 1)] cos u sin v.

If m, n � 3, then the sign of Div depends on f (u, v) = sin u cos v and g(u, v) =
cos u sin v. Therefore, in D+

1 we have

Div X > 0.

Hence, the Bendixson criterion implies the claiming on D+
1 .

On the other hand, on D−
2 the functions sin v and cos v are negative, so that

Div X < 0.

Using again the Bendixson criterion, our assertion on D−
2 follows.

Using a continuity argument, we see that X2(u, v) > 0 for

arctan

(
n − 1

m − 1
cot u

)
< v < π

and X2(u, v) < 0 for

−π

2
< v < arctan

(
n − 1

m − 1
cot u

)
.

Then, X does not have periodic orbits in the region

D−
1 =

{
(u, v)

∣∣∣∣ −π

2
< v < 0

}
.

The earlier argument proves also a similar claiming for X in D+
2 and ends the

proof.
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Therefore the Poincaré–Bendixson Theorem implies the following results.

COROLLARY 3.6. For any m, n � 3, the set (0, π
2 ) × [−π

2 , π ] is contained in
the unstable manifold W u(p6) of the singular point p6.

COROLLARY 3.7. For any m,n � 3, the set (0, π
2 ) × [−π, 0] is contained in the

stable manifold W s(p7) of the singular point p7.

Now, we study the behavior of the part of the stable manifold W s(p2) contained
in W u(p6). Since along the vertical axis we have

X (0, v) =






(0, X−
2 ) for v ∈

(
−π

2
,
π

2

)
,

(0, X+
2 ) for v ∈

(
π

2
, π

)
,

and the linear part of X in p2 is

DX p2 =
( −1 0

m − 1 n − 1

)
,

it follows that the unstable manifold W u(p2) is contained in the y-axis.
We have the following result for the stable manifold W s(p2).

PROPOSITION 3.8. The vector field X has a unique integral curve φ(t) defined
for all t ∈ R and such that

lim
t→−∞ φ(t) = p6 = (α, α)

and

lim
t→∞ φ(t) = p2 =

(
0,

π

2

)
.

That is, {φ(t)} ⊂ W s(p2).
Proof. The stable manifold theorem in dimension two implies the existence

of one-dimensional stable manifold for p2. The tangent space of this manifold is
generated by ξ = (ξ 1, ξ 2), an eigenvector associated to the eigenvalue −1 of DX p2 .
A direct calculation shows that we may choose

ξ =
(

1, −m − 1

n

)
.

As for any m, n ∈ N we have the inequality

dv1

du
(0) = −m − 1

n − 1
< −m − 1

n
,
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it follows that W s(p2) is transversal to the graph of the function v1 at p2; moreover,
ξ points to the region above of this graph.

Because of this, the part of W s(p2) contained in (0, π/2) × [−π/2, π ] is also
contained in W u(p6). Since these manifolds are one-dimensional, we get an integral
curve φ(t) of X , which is defined for all t ∈ R since X is bounded in [0, π/2] ×
[−π/2, π ]. Hence we have

lim
t→−∞ φ(t) = p6 and lim

t→∞ φ(t) = p2

and so the proof is complete.

We may prove in a similar way the existence of one-dimensional manifolds
invariant under the flow of X connecting every saddle point p1, p2, p3, p4, p5 with
p6 and p7. From now on, W u(pi ), W s(pi ), i = 1, . . . , 5, will denote the part of
such invariant manifolds contained in D̄ = [0, π

2 ] × [−π, π ].
On the other hand, since D̄ is compact and X is continuous, it follows that every

orbit is complete, that is, it is defined for all t ∈ R.
We summarize the earlier results as follows.

PROPOSITION 3.9. For m, n � 3, every orbit {φ(t)} of X contained in D̄ =
[0, π

2 ] × [−π, π ] is defined for all t ∈ R, and falls into one of the following types:

(1) {φ(t)} is contained in the v-axis and has p1 or p2 as α-limits or ω-limits. (The
singular orbits p1 and p2 belong to this case.)

(2) {φ(t)} is contained in the line u = π/2 and has p3, p4 or p5 as α-limits or
ω-limits. (The singular orbits p3, p4 and p5 belong to this case.)

(3) φ(t) ≡ p6 or φ(t) ≡ p7.
(4) {φ(t)} ⊂ W u(p6) ∩ W s(p7). That is,

lim
t→−∞ φ(t) = p6 and lim

t→∞ φ(t) = p7.

(5) {φ(t)} ⊂ W u(p6) ∩ W s(p8), with p8 = (α, α + π ). That is,

lim
t→−∞ φ(t) = p6 and lim

t→∞ φ(t) = p8.

(6) {φ(t)} ⊂ W u(p9) ∩ W s(p7), where p9 = (α, α − 2π ). That is,

lim
t→−∞ φ(t) = p9 and lim

t→∞ φ(t) = p7.

(7) {φ(t)} = W s(p2) ⊂ W u(p6). That is,

lim
t→−∞ φ(t) = p6 and lim

t→∞ φ(t) = p2.
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(8) {φ(t)} = W s(p4) ⊂ W u(p6). That is,

lim
t→−∞ φ(t) = p6 and lim

t→∞ φ(t) = p4.

(9) {φ(t)} = W u(p1) ⊂ W s(p7). That is,

lim
t→−∞ φ(t) = p1 and lim

t→∞ φ(t) = p7.

(10) {φ(t)} = W u(p3) ⊂ W s(p7). That is,

lim
t→−∞ φ(t) = p3 and lim

t→∞ φ(t) = p7.

We now describe all nonvertical orbits of X contained in the closure
W u(p6) ∩ W s(p7). Since the behavior of the singular points in the other invariant
two-dimensional manifolds is the same as in W u(p6) ∩ W s(p7), the global behavior
of X is represented in D̄.

LEMMA 3.10. Every orbit {φ(t)} ⊂ W u(p6) ∩ W s(p7) meets the line v = u or
the line v = u − π .

Proof. Any orbit φ(t) = (u(t), v(t)) contained in W u(p6) ∩ W s(p7) may be
reparametrized by t = t(τ ), τ ∈ (0, 1), in order to obtain a smooth curve ψ(τ ) =
φ(t(τ )) = (̃u(τ ), ṽ(τ )) with ψ(0) = p6 and ψ(1) = p7. As ũ(0) = ũ(1) = α,
the mean value theorem implies the existence of τ0 ∈ (0, 1) such that d̃u

dτ
(τ0) = 0.

But d̃u
dτ

(τ0) = du
dt (t0) dt

dτ
(τ0), where t0 = t(τ0). This fact implies du

dt (t0) = 0, because
dt
dτ

(τ0) �= 0 and t = t(τ ) is a reparametrization.
In this way, there exists t0 ∈ R such that u′(t0) = 0. But the first coordinate of

the field X vanishes in W u(p6)∩W s(p7) only along the lines v = u and v = u −π ,
which implies φ(t0) lies in some of those lines.

COROLLARY 3.11. Given m, n � 3 integers such that m + n � 7, every orbit
{φ(t)} contained in W u(p6) ∩ W s(p7) meets the line v = u and the line v = u − π

infinitely countable times. Moreover, every such orbit spirals out of p6 and spirals
into p7.

Proof. This follows from the fact than p6 and p7 are hyperbolic foci.

Figure 4 shows the flows in the cases m + n � 7.

PROPOSITION 3.12. For any integers m, n � 3 such that m + n � 8, every
orbit {φ(t)} contained in W u(p6) ∩ W s(p7) has one and only one of the following
properties:
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Figure 4. Flows for the cases m + n � 7.

(1) {φ(t)} meets once the line v = u and does not meet the line v = u − π .
Moreover, {φ(t)} meets once the curve v = v1(u) = arctan( n−1

m−1 cot u) and
does not meet the curve v = v1(u) = arctan( n−1

m−1 cot u) − π .
(2) {φ(t)} meets once the line v = u and once the line v = u −π . Moreover, {φ(t)}

meets once the curve v = v1(u) = arctan( n−1
m−1 cot u) and meets once the curve

v = v1(u) = arctan( n−1
m−1 cot u) − π .

(3) {φ(t)} meets once the line v = u − π and does not meet the line v = u.
Moreover, {φ(t)} meets once the curve v = v1(u) = arctan( n−1

m−1 cot u) −π and
does not meet the curve v = v1(u) = arctan( n−1

m−1 cot u).

Proof. Let β = m + n − 2 be as in Proposition 3.4. If we define a field
Y = (Y1(z, w), Y2(z, w)) as the linearization of X at the point p7, we obtain a
system of linear differential equations

z′ = µ1z = Y1(z, w), w′ = µ2w = Y2(z, w),

where

µ1 = − 1
2 [β + 1 +

√
(β + 1)2 − 8β]

and

µ2 = − 1
2 [β + 1 −

√
(β + 1)2 − 8β]

are the eigenvalues obtained in Proposition 3.4, associated to the corresponding
eigenvectors

ξ1 = (
ξ 1

1 , ξ 2
1

) =
(

1,
−2β

3β + 1 +
√

(β + 1)2 − 8β

)
,

ξ2 = (
ξ 1

2 , ξ 2
2

) =
(

1,
−2β

3β + 1 −
√

(β + 1)2 − 8β

)
.
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Figure 5. Conjugation of the fields X and Y .

We remark that the second coordinates of these vectors are negative and ξ 2
1 < ξ 2

2 ,
which implies that ξ1 points to the region above of ξ2.

In the system of coordinates (z, w) relative to the basis {ξ1, ξ2}, the flow of Y
around the origin behaves as shown in Figure 5.

Hence, the Grobman–Hartman Theorem for C1-flows (see [10], p. 127) implies
that the field X in a neighborhood of p7 is C1-conjugated to the field Y near the
origin.

Since the orbits ψ−(t) and ψ+(t) on the z-axis are separatrices for the field Y ,
under the conjugation they correspond locally to the separatrices of X ; namely,
φu

1 (t) = W u(p1) and φu
2 (t) = W u(p3), respectively. These orbits are contained in

W u(p6) ∩ W s(p7) and converge to p7 as t → ∞ with the same direction as ξ1, this
is, with slope −2β/(3β + 1 +√

(β+1)2−8β).
The orbit ψ−(t) converges to zero with slope zero, together with a family of orbits

of Y , as shown in Figure 5. Conjugation implies the existence of a corresponding
family of orbits of X which together with φu

1 (t) converge to p7 with the same
slope −2β/(3β + 1 +√

(β+1)2−8β). Such a family does not meet the line u = α and
therefore does not meet the line v = u − π . From Lemma 3.10, it follows that this
family meets only v = u.

On the other hand, since X is continuous and transversal to the line u = α, it
follows the existence of an orbit {φ1(t)} ⊂ W u(p6) ∩ W s(p7) bounding the afore-
mentioned family, converging asymptotically to p7 with direction ξ2, this is, with
slope −2β/(3β + 1 −√

(β+1)2−8β). This orbit φ1 corresponds under conjugation
with the vertical orbit ψ1 of Y on the upper half part of the plane z, w. We observe
that φ1 does not meet transversally u = α, and therefore belongs to the class of
orbits meeting only the line v = u.

A linearization near the hyperbolic node p6 will give that the family of orbits
considered earlier will diverge from p6 with direction ξ1. In particular, those orbits
of the family corresponding to the region to the left of u = α (or the left lower part of
the plane z, w) will cross the horizontal line v = α after leaving p6 = (α, α). This
fact implies the existence of a point where v′ = 0, or X2 = 0. Recalling Lemma 3.1
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Figure 6. Flows for the cases m + n � 8.

we obtain a point (u, v) of the orbit where v = v1(u) = arctan( n−1
m−1 cot u). As the

orbit does not meet u = α, it also does not meet v = v2(u) = arctan( n−1
m−1 cot u)−π .

A similar analysis near the hyperbolic node p6 proves the existence of another
family of orbits of X in W u(p6) ∩ W s(p7) such that every such orbit satisfy (3) in
this Proposition; moreover, this family will be bounded by an orbit {φ2(t)} which
together with the family converges to p7 in the direction of ξ2, this is, with slope
−2β/(3β + 1 +√

(β+1)2−8β).
The continuity of X and its transversality relative to the lines v = u, u = α

and v = u − π imply that every orbit in the region bounded by {φ1(t)} and {φ2(t)}
satisfy conditions (2), which finish the proof.

Proposition 3.12 completes our global description of the flow for X . Figure 6
shows the flows in the case m + n � 8.

Remark 3.13. As shown in the proof, Proposition 3.12 implies the existence
of an orbit {φ1(t)} with property (1) separating the curves with property (1) from
the curves with property (2). Similarly, there is an orbit {φ2(t)} with property (3)
separating curves with property (3) from those satisfying property (2). They will
play an important role in the conclusion of Theorem 1.2.

4. The Profile Curves

The aim of this section will be to translate the behavior of the orbits {φ(t)} of
X described in Proposition 3.9 into information about the corresponding profile
curves γ .

PROPOSITION 4.1. For m, n � 3, let φ(t) = (u(t), v(t)) be an orbit of X con-
tained in D̄ = [0, π

2 ] × [−π,π ], defined for all t ∈ R and γ (t) = (x(t), y(t))
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be the corresponding profile curve. Hence γ falls into one of the following types,
numbered according to Proposition 3.9:

1. γ is contained in the x-axis.
2. γ is contained in the y-axis.
3. γ is a ray y =√

n−1
m−1 x.

4–6. γ is doubly asymptotic to the ray y =√
n−1
m−1 x.

7–8. γ is asymptotic to y =√
n−1
m−1 x and meets the x-axis orthogonally. Moreover,

it is a graph over its projection on the x-axis.
9–10. γ is asymptotic to y = √

n−1
m−1 x and meets the y-axis orthogonally. Moreover,

it is a graph over its projection on the y-axis.

Proof. First we analyze the singularities of X given in Corollary 3.2. We have
u(t) ≡ 0 for p1 and p2, so Equation (6) shows that y(t) ≡ 0. Similarly, u(t) ≡ π/2
for p3, p4, p5, so that x(t) ≡ 0. These correspond to the Cases (1) and (2) in the
current Proposition. For p6 and p7 we have u(t) ≡ α, so that y(t) = (tan α)x(t).
Recalling that α = arctan

√
n−1
m−1 , we have Case (3).

Now we analyze Case (4). From Proposition 3.9 we know that {φ(t)} is contained
in W u(p6) ∩ W s(p7), which means that

lim
t→−∞(u(t), v(t)) = (α, α) and lim

t→∞(u(t), v(t)) = (α, α − π ).

The first fact implies that the profile curve γ (t) satisfies

lim
t→−∞

y(t)

x(t)
= tan α and lim

t→−∞
y′(t)
x ′(t)

= lim
t→−∞

dy

dx
= tan α,

so that γ asymptotics y = (tan α)x at −∞.
On the other hand, we have

lim
t→∞

y(t)

x(t)
= tan α and lim

t→∞
y′(t)
x ′(t)

= lim
t→∞

dy

dx
= tan(α − π ).

As tan α = tan(α − π ), we have that γ asymptotics y = (tan α)x at ∞. Hence we
derive Case (4); Cases (5) and (6) can be treated similarly.

The asymptotic behavior in Cases (7)–(10) can be treated as earlier. In Case (7) of
Proposition 3.9, {φ(t)} = W s(p2) ⊂ W u(p6), so that limt→∞ φ(t) = p2 = (0, π

2 ),
which gives

lim
t→−∞

y(t)

x(t)
= 0 and lim

t→−∞
y′(t)
x ′(t)

= lim
t→−∞

dy

dx
= tan

π

2
= ∞,

these facts imply the desired orthogonality for Case (7). To prove that this profile
curve is a graph over its projection on the x-axis, we note that the associated orbit
(u(t), v(t)) is contained in the set D+

1 = (0, π
2 ) × (0, π

2 ). Since tan v(t) = y′/x ′ =
dy/dx , we have that dy/dx > 0 for every point of the profile curve. The implicit
function theorem implies that the profile curve is a graph.

Cases (8)–(10) may be treated similarly. Therefore we derive the Lemma.
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LEMMA 4.2. The profile curve γ has an inflection point (when it is seen as the
graph of a function y = y(x) or x = x(y)) if and only if {φ(t)} either meets the curve
v = v1(u) = arctan( n−1

m−1 cot u) or meets the curve v = v2(u) = arctan( n−1
m−1 cot u)−

π .
Proof. The proof follows from the fact that d2 y/dx2 or d2x/dy2 in Equations

(4) and (5) change sign if and only if

(m − 1)y
dy

dx
− (n − 1)x = 0 or (m − 1)y − (n − 1)

dx

dy
x = 0.

Each one of these equations is equivalent to

v1(u) = arctan

(
n − 1

m − 1
cot u

)
or v2(u) = arctan

(
n − 1

m − 1
cot u

)
− π

in the transformed plane (u, v).

Now we will study the cases m + n � 7 and m + n � 8 separately. First we will
treat the case m + n � 7.

PROPOSITION 4.3. Let m, n � 3 be integers such that m + n � 7. Profile
curves corresponding to Cases 4–10 in Proposition 3.9 intersect the ray y =√

n−1
m−1 x

infinitely countable times.
Proof. By Corollary 3.11, an orbit {φ(t)} of this kind spirals into p7, which

means that the orbit meets infinitely countable times the line u = α. As this line
corresponds to the ray y =√

n−1
m−1 x, the proposition follows.

Second we will treat the case m + n � 8.

PROPOSITION 4.4. Let m, n � 3 be integers such that m + n � 8. The profile
curves corresponding to Cases 4–10 in Proposition 3.9 may be classified as follows:

(1) Those profile curves whose corresponding orbit {φ(t)} satisfies (a) in Propo-
sition 3.12 are always below the ray y =√

n−1
m−1 x and have only one inflection

point.
(2) Those profile curves whose corresponding orbit {φ(t)} satisfies (2) in Proposi-

tion 3.12 are embedded and have only two inflection points.
(3) Those profile curves whose corresponding orbit {φ(t)} satisfies (3) in Propo-

sition 3.12 are always above the ray y =√
n−1
m−1 x and have only one inflection

point.

Proof. Statements (1) and (3) are just reformulations of the behavior of the
corresponding cases in Proposition 3.12, using also Lemma 4.2.

On the other hand, by Case (2) in Proposition 3.12 and Lemma 4.2 we have
that a profile curve γ of type (2) in the current proposition has only two inflection
points.
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We will prove now that γ does not have selfintersections. Let {φ(t)} an orbit
associated to γ . By (3) in Proposition 3.12, there exist t0 < t1 such that u′(t0) =
u′(t1) = 0 and u(t0) < u(t1).

We claim that {φ(t)} restricted to [t0, t1] meets once every line u = β for
u(t0) < β < u(t1). If this is not the case, there exist β and t0 < t2 < t3 < t1
such that u(t2) = u(t3) = β. The mean value theorem implies that there exists
t∗ ∈ (t2, t3) such that u′(t∗) = 0. Therefore, {φ(t∗)} is in the straight line v = u or
in the line v = u − π , giving a contradiction.

This fact implies that γ restricted to [t0, t1] meets once every line y = (tan β)x
for u(t0) < β < u(t1) and thus γ [t0, t1] is embedded in the plane (x, y). Note that
the points γ (t0), γ (t1) lie in opposite sides of the line y = (tan α)x , because {φ(t)}
meets only once u = α. Similarly, the sets γ (−∞, t0] and γ [t1, ∞) lie in opposite
sides of the line y = (tan α)x .

In this way, if the smooth curve γ has some selfintersection, it must occur in
one side of y = (tan α)x . But the existence of such a selfintersection will imply the
existence of at least three inflection points in γ , which contradicts what we have
just proved.

5. Classification of the O(m)×O(n)-Invariant Minimal Hypersurfaces in R
m+n

In this section we finally translate the behavior of the trajectories of the vector field
X and that of the profile curves to derive the classification of our hypersurfaces. We
will use the following facts concerning a O(m)×O(n)-invariant hypersurface M in
R

m+n: M is embedded if and only if the associated profile curve γ (t) is embedded
in the orbit space. Moreover, if the orbit of X associated to the profile curve γ (t)
is defined for all t ∈ R, then the corresponding hypersurface is complete. (See e.g.
[8]).

We will use as main tool our Proposition 3.9. It is clear that the first two cases
in that Proposition give rise to ‘degenerate’ manifolds of dimensions m or n.

Before stating and prove our classification theorems, it is now clear that the
cases m + n � 7 and m + n � 8 must be treated separately. We now describe the
first case, whose proof follows the same lines as in [6].

THEOREM 5.1 [Theorem 1.1 of Section 1]. Given integers m, n � 3 such that
m + n � 7, every nonextendable O(m) × O(n)-invariant minimal hypersurface
M ⊂ R

m+n falls in only one of the following types:

(1) M is a cone Cm,n with vertex at the origin, generated by a ray y =√
n−1
m−1 x.

(2) M is an immersed complete hypersurface which intersects itself and Cm,n in-
finitely countable times, approaching this cone asymptotically.

(3) M is an embedded complete hypersurface intersecting Cm,n infinitely count-
able times, approaching this cone asymptotically and intersecting orthogonally
R

m × {0} or {0} × R
n.
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Proof. Case 1 follows from the corresponding case in Proposition 4.1. The
proof for Case 2 is quite similar to that of Lemma 3.6 (ii) in [6]; we refer the reader
to that paper and omit the details.

As for the Case 3, the profile curve corresponds to a separatrix of the singularities
of X contained in (0, π/2) × (−π, π ). The claiming follows from Corollary 3.11
and Cases 7–10 of Proposition 4.1.

Now we will work out the case m + n � 8.

THEOREM 5.2 [Theorem 1.2 of Section 1]. Given integers m, n � 3 such that
m + n � 8, every nonextendable O(m) × O(n)-invariant minimal hypersurface
M ⊂ R

m+n falls in only one of the following types:

(1) M is a cone Cm,n with vertex at the origin, generated by a ray y =√
n−1
m−1 x.

(2) M is an immersed complete hypersurface which does not intersect Cm,n, being
asymptotic to this cone.

(3) M is an embedded complete hypersurface which intersects Cm,n once, being
asymptotic to this cone.

(4) M is an embedded complete hypersurface which does not intersect Cm,n, be-
ing asymptotic to this cone and intersecting orthogonally R

m × {0} or {0} ×
R

n.

Proof. Case 1 follows again from the corresponding case in Proposition 4.1.
In Case 2, the profile curves are associated with Cases (1) and (3) given in

Proposition 3.12. Proposition 4.4 implies that every such profile curve does not
meet the line y =√

n−1
m−1 x, being doubly asymptotic to this line. This fact implies that

the hypersurface M is asymptotic to the cone Cm,n .
Case 3 corresponds to the class of orbits {φ(t)} satisfying (2) in Proposition 4.4.

As noted at the beginning of this section, the fact of these curves being embedded
implies that the associated hypersurface are embedded.

As for Case 4, we consider the profile curves of Cases 7–10 in Proposition 4.1.
Again, these curves are embedded and so do the corresponding hypersurfaces.

In Cases 2–4, the profile curves are complete in the orbit space and thus the
corresponding orbits of X are complete. Therefore the theorem follows.

6. On the Stability of the O(m) × O(n)-Invariant Minimal Hypersurfaces

In this section we analyze the stability of the hypersurfaces classified in the previous
section. We will follow closely [11] (see also [8]).

It is well known that a minimal immersion x̄ : Mk → R
k+1 is a critical point for

the area functional
∫

D d M defined in every relatively compact domain D ⊂ Mk .
More precisely, given a smooth function f ∈ C∞

c (D), the space of functions
f : D → R with compact support, we use it to define a smooth normal variation
x̄t of x̄ = x̄0. If A(t) = ∫

x̄t (D) d M , then the first variation A′(0) vanishes. The
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well-known second variation formula reads

A′′(0) = −
∫

D

(
f � f + ‖B‖2 f 2

)
d M, (8)

where � denotes the Laplace operator and ‖B‖2 is the squared norm of the second
fundamental form of x̄ . We say that the immersion x̄ is stable if and only if A′′(0) � 0
for every f ∈ C∞

c (D).
Associated to the second variation formula we have the second order differential

operator T = � + ‖B‖2 I . T is elliptic and is called the Jacobi operator. The
following proposition is proved in ([11], p. 201).

PROPOSITION 6.1. A minimal immersion x̄ is stable if and only if there exists a
positive function h ∈ C∞

c (D) defined in M satisfying T h = 0.

It is also known that, given a minimal orientable immersion x̄ with normal vector
field N , the support function h = 〈x̄, N 〉 satisfies T h = 0 (see [12], for example).
Finally, we recall that the index of T in D is the maximal dimension of a subspace
of C∞

c (D) where the quadratic form

I ( f, f ) = −
∫

D
f T f d M

is negative definite. The index of T in Mk is

Ind(T, Mk) = sup
D⊂Mk

Ind(T, D),

the supremum taken over all relatively compact domains D in Mk .
We are ready to state and prove the results on stability of our hypersurfaces.

THEOREM 6.2. [Theorem 1.3 of Section 1] Let m, n � 3 and m + n � 7. Any
complete minimal O(m) × O(n)-invariant hypersurface M in R

m+n has infinite
index.

Proof. A straightforward calculation shows that the support function h of M ,
expressed in the parametrization (1), is given by

h(t) = −u′(t)(x(t)2 + y(t)2)

which clearly depends only on the profile curve. So it suffices to analyze the set
where u′ vanishes.

Since for this case the singular points p6 and p7 are hyperbolic foci, every
trajectory in W u(p6) intersects infinitely countable times the line u = v. Thus,
there exists an increasing, unbounded sequence of points tk such that u′(tk) = 0.
This fact implies the existence of an increasing sequence of compact sets

D1 ⊂ D2 ⊂ · · · Dk ⊂ · · · ⊂ M

such that h|∂ Dk = 0, where ∂ Dk is the orbit of γ (tk) under the action of O(m)×O(n).
The Morse Index Theorem (see [13]) implies that Ind(T, M) is infinite.
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THEOREM 6.3 [Theorem 1.4 of Section 1]. Let m, n � 3 and m + n � 8. The
unique stable complete minimal O(m) × O(n)-invariant hypersurfaces are those of
the type (4) given in Theorem 1.2.

Proof. In this case, the hyperbolic singularities are nodes. The separatrix curves
φ(t) given by Proposition 3.8 never intersect the lines u = v and v = u − π and
thus u′(t) �= 0 for every t . This implies that the associated support functions never
vanish along these curves. By Proposition 6.1, the corresponding hypersurfaces are
stable. The uniqueness follows from Propositions 3.8 and 3.12.

Since the hypersurfaces associated to profile curves of type (4) in Theorem 1.2
are homeomorphic to R

m × S
n−1 or to S

m−1 × R
n , we obtain:

THEOREM 6.4 [Theorem 1.5 of Section 1]. There exist embedded, complete,
stable minimal hypersurfaces in R

m+n, m + n � 8, m � 3, n � 3, not homeomor-
phic to R

m+n−1 that are O(m) × O(n)-invariant.

References

1. Hsiang, W. Y. and Lawson, H. B.: Minimal submanifolds of low cohomogeneity, J. Differential
Geom. 5 (1971), 1–38.

2. Delaunay, C.: Sur la surface de revolution dont la courbure moyenne est constante, J. Math. Pure
Appl. 16 (1841), 309–321.

3. do Carmo, M. P. and Dajczer, M.: Rotational hypersurfaces in spaces of constant curvature, Trans.
Amer. Math. Soc. 277(2) (1983), 685–709.

4. Hsiang, W. Y., Teng, Z. H. and Yu, W. C.: New examples of constant mean curvature immersions
of (2k − 1)-spheres into Euclidean 2k-space, Ann. Math. 117 (1983), 609–625.

5. Bombieri, E., De Giorgi, E. and Giusti, E.: Minimal cones and the Bernstein problem, Invent.
Math. 7 (1969), 243–269.

6. Alencar, H.: Minimal hypersurfaces in R
2m invariant by SO(m) × SO(m), Trans. Amer. Math.

Soc. 337 (1993), 129–141.
7. Palmas, O.: O(2) × O(2)-invariant hypersurfaces with zero scalar curvature, Arch. Math. 74

(2000), 226–233.
8. Sato, J.: Stability of O(p + 1) × O(p + 1)-invariant hypersurfaces with zero scalar curvature in

Euclidean space, Ann. Global Anal. Geom. 22 (2002), 135–153.
9. Cao, H. D., Shen, Y. and Zhu, S.: The structure of stable minimal hypersurfaces in R

n+1, Math.
Res. Lett. 4(5) (1997), 637–644.

10. Perko, J.: Differential equations and Dynamical Systems, TAM 7, Springer-Verlag, Berlin, 1996.
11. Fischer-Colbrie, D. and Schoen, R.: The structure of complete stable minimal surfaces in 3-

manifolds of non-negative scalar curvature, Comm. Pure Appl. Math. 33 (1980), 199–211.
12. Rosenberg, H.: Hypersurfaces of constant curvature in space forms, Bull. Sci. Math. 117 (1993),

211–239.
13. Smale, S.: The Morse index theorem, J. Math. Mech. 14 (1965), 1049–1056.


