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Abstract. In this work we consider connected, complete and orientable hy-
persurfaces of the sphere Sn+1 with constant nonnegative r-mean curvature.
We prove that under subsidiary conditions, if the Gauss image of M is con-
tained in a closed hemisphere, then M is totally umbilic.

Introduction

One of the most celebrated theorems of minimal surfaces in R3 is Bernstein’s
theorem:

Theorem (Bernstein [4]). Let M ⊂ R3 be a complete minimal surface in R3 that
is given by an entire (defined over the whole R2) graph of a smooth function f :
R2 → R. Then M is a plane.

The above result is also true under the weaker hypothesis that the image of the
Gauss map of M lies in an open hemisphere of Sn+1, as one can see in [3]. These
results raise the following problem for the geometry of minimal surfaces in spheres:
Does there exist a similar result for minimal hypersurfaces of the unit sphere? The
answer to this question was obtained independently by E. De Giorgi ([6]) and J.
Simons (see [13] - Theorem 5.2.1) as follows.

Theorem. If the Gauss image (see the definition below) of a compact minimal
hypersurface Mn in the Euclidean sphere lies in an open hemisphere of Sn+1, then
M must be a great hypersphere in Sn+1.

After that, K. Nomizu and Brian Smyth (see [9] - Theorem 2) were able to
generalize this result to constant mean curvature hypersurfaces of Sn+1, proving
the following result:

Theorem (Nomizu-Smyth). Let M be any compact connected orientable manifold
of dimension n ≥ 2 immersed in the sphere Sn+1 with constant mean curvature. If
the Gauss image of M lies in a closed hemisphere of Sn+1, then M is a hypersphere
in Sn+1.
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The goal of this work is to extend these results to higher-order constant mean
curvature hypersurfaces of the sphere. First let us fix some notation.

Let Mn be a compact orientable Riemannian manifold and let x : Mn → Sn+1

be an isometric immersion into the unit sphere Sn+1 ⊂ Rn+2. Since M is orientable,
we can choose a global unit normal field N . The Riemannian connections ∇ and
∇̃ of M and Sn+1, respectively, are related by

∇̃XY = ∇XY + 〈A(X), Y 〉N,
where A is the shape operator of the immersion, defined by

∇̃XN = −A(X).

Let k1, ..., kn be the eigenvalues of A. We define the r-mean curvature of the
immersion at a point p by

Hr =
1(
n
r

) ∑
i1<...<ir

ki1 ...kir =
1(
n
r

)Sr,
where Sr is the r-symmetric function of the k1, ..., kn. In order to unify the notation,
we will define H0 = 1 and Hr = 0, for all r ≥ n + 1. For r = 1, H1 = H is the
mean curvature of the immersion, in the case r = 2, H2 is the scalar curvature and
for r = n, Hn is the Gauss-Kronecker curvature.

The Gauss map φ : Mn → Sn+1 is defined by

φ(P ) = N(P ) ∈ Sn+1.

The set φ(M) is called the Gauss image of M . We observe that the Gauss image
depends on the choice of the orientation of M , but the two possibilities are related
by an antipodal mapping of Sn+1. Thus the statement that the Gauss image of M
is contained in a closed hemisphere of Sn+1 is independent of the orientation of M .

For the case Hr = 0, we obtain that

Theorem A. Let Mn → Sn+1 be a compact and connected hypersurface of Sn+1

with Hr = 0, for some r = 1, ..., n − 1. Assume that the Gauss image of M is
contained in a closed hemisphere and that Hr−1 does not change sign in M . Then
M is totally geodesic.

If Hr > 0, we were able to prove that

Theorem B. Let Mn → Sn+1 be a compact and connected hypersurface of Sn+1

with constant positive (r + 1)-mean curvature Hr+1, for some r = 0, ..., n − 2.
Assume that the Gauss image of M is contained in a closed hemisphere, Hr ≥ 0
and that the following inequality holds:

H1Hr ≥ Hr+1.

Then M is totally umbilic.

In the case of the scalar curvature, part of the hypothesis of the above theorems
is trivially satisfied, and we obtain the following result.

Theorem C. Let Mn be a compact orientable hypersurface of the sphere with
constant scalar curvature H2 ≥ 0. In the case H2 = 0, suppose also that H1 does
not change sign. If the Gauss image of M lies in a closed hemisphere of Sn+1, then
M is totally umbilic.
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The authors do not know if the hypotheses of Theorems A, B and C can be
weakened.

Parts of these results were obtained by R. Reilly, [11], with the strong hypothesis
that the Gauss image is contained in an open hemisphere.

The first and the third authors would like to thank the hospitality of Institut de
Mathématiques de Jussieu, where this work was done.

1. Preliminaries

We introduce the rth Newton tensors, Pr : TpM → TpM , which are defined
inductively by

P0 = I,
Pr = SrI −APr−1, r > 1.

It is easy to see that each Pr commutes with A, and if ei is an eigenvector of A
associated to the principal curvature ki, then

P1(ei) = µiei = (S1 − ki)ei.
In [11], Reilly showed that the Pr’s satisfy the following.

Proposition 1.1 ([11], see also [2] - Lemma 2.1). Let x : Mn → Nn+1 be an
isometric immersion between two Riemannian manifolds, and let A be its second
fundamental form. The rth Newton tensor Pr associated to A satisfies:

(1) trace(Pr) = (n− r)Sr ,
(2) trace(APr) = (r + 1)Sr+1,
(3) trace(A2Pr) = S1Sr+1 − (r + 2)Sr+2.

Associated to each Newton tensor Pr, we define a second-order differential op-
erator

Lr(f) = trace(PrHess f).

We observe that for r = 0, L0 is the Laplacian, which is always an elliptic operator.
If Nn+1 has constant sectional curvature, it follows from the Codazzi equation (see
[12], p. 225) that Lr is

Lr(f) = divM (Pr∇f).

Hence Lr is a self-adjoint operator. In general, for r ≥ 1, Lr is not an elliptic
operator. The following proposition give us a condition for Lr to be elliptic.

Proposition 1.2. Let Mn be a connected, compact and orientable Riemannian
manifold, and let x : Mn → Sn+1 be an isometric immersion with Hr+1 constant.
If Mn has one point where all principal curvatures are positive, then Lr is an elliptic
operator.

Proof. See the proof of Proposition 3.2 of [2].

For hypersurfaces of Rn+1 with Hr = 0, Hounie and Leite, [8], were able to give
a geometric condition that is equivalent to Lr being elliptic. In fact, their proof
can be generalized to hypersurfaces of the sphere, and we have the following result.

Proposition 1.3 ([8] - Proposition 1.5). Let M be a hypersurface in Rn+1 or Sn+1

with Hr = 0, 2 ≤ r < n. Then the operator Lr−1(f) = div(Pr−1∇f) is elliptic at
p ∈M if and only if Hr+1(p) 6= 0.
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Since the r-mean curvatures of Mn are symmetric means of the n-uple of prin-
cipal curvatures of M , they are related by the following algebraic inequalities (see
[7], p. 52, and [5], p. 285):

(1.1) Hi−1Hi+1 ≤ H2
i , ∀i, 1 ≤ i < n.

Also, provided that the Hr’s are nonnegative, r = 1, ..., i,

(1.2) H1 ≥ H1/2
2 ≥ H1/3

3 ≥ ... ≥ H1/i
i .

Furthermore, the equality in (1.1) and (1.2) holds only if k1 = k2 = ... = kn.

2. Integral formula

Consider the functions f, g : M → R, given by

f(P ) = 〈N(P ), α〉

and
g(P ) = 〈x(P ), α〉,

where α is a fixed vector of Rn+2. These functions satisfy (see [2], Lemma 5.2)

Lr(g) = −(r + 1)Sr+1f − (n− r)Srg,(2.1)

Lr(f) = − (S1Sr+1 − (r + 2)Sr+2) f − (r + 1)Sr+1g,(2.2)

where, in the last equation, we use the fact that Sr+1 is constant. In particular, for
r = 0, we get

4(g) = −S1f − ng,(2.3)

4(f) = −
(
S2

1 − 2S2

)
f − S1g = −‖A‖2f − S1g.(2.4)

The following integral formula will be needed.

Proposition 2.1. Let Mn → Sn+1 be a compact orientable hypersurface isometri-
cally immersed in Sn+1, with Hr+1 constant, for some r with 0 ≤ r < n− 2. Then,

(2.5)
∫
M

[(n− r − 1)S1Sr+1 − n(r + 2)Sr+2]f dM = 0.

Proof. Observe that, since Sr+1 is constant, by (2.2) and (2.3), we obtain that

Lrf −
(r + 1)
n

Sr+14g = −(S1Sr+1 − (r + 2Sr+2)f

−(r + 1)Sr+1g +
(r + 1)
n

Sr+1S1f +
(r + 1)
n

Sr+1ng

= −S1Sr+1f + (r + 2)Sr+2f +
(r + 1)
n

Sr+1S1f

=
1
n

[−nS1Sr+1f + n(r + 2)Sr+2f + (r + 1)Sr+1S1f ]

=
1
n

[(−n+ r + 1)S1Sr+1f + n(r + 2)Sr+2f ]

=
−1
n

[(n− r − 1)S1Sr+1 − n(r + 2)Sr+2]f.
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Integrating this last expression and applying Stokes’ Theorem, one has that∫
M

[(n− r − 1)S1Sr+1 − n(r + 2)Sr+2]f dM

=
∫
∂M

〈Pr∇f −
(r + 1)
n

Sr+1∇g, ν〉 dS = 0,

where the last equality follows from the fact that ∂M = ∅. �

3. The case Hr = 0

In this section we consider hypersurfaces of the sphere with Hr = 0. We have
the following result.

Theorem 3.1 (Theorem A of the Introduction). Let Mn → Sn+1 be a compact
and connected hypersurface of Sn+1 with Hr = 0, for some r = 1, ..., n−1. Assume
that the Gauss image of M is contained in a closed hemisphere and that Hr−1 does
not change sign in M . Then M is totally geodesic.

Proof. By (1.1) and the fact that Hr = 0, it follows that

Hr+1Hr−1 ≤ 0.

Thus, since Hr−1 does not change sign in M , Hr+1 also does not change sign on
M .

On the other hand, our hypothesis on the Gauss image implies that there exists
a vector α ∈ Rn+2 such that

f(P ) = 〈N(P ), α〉
is nonnegative along M . Hence, f(P )Sr+1(P ) does not change sign along M . The
equation (2.5), in our case, reads∫

M

f(P )Sr+1(P )dM = 0.

Thus,

(3.1) f(P )Sr+1(P ) = 0, ∀P ∈M.

Let A ⊂M be the set of all points of M where Sr+1(P ) > 0. In A, by equation
(3.1), f ≡ 0. By continuity, f is zero along A, where A is the closure of A. On the
other hand, the set M/A is an open set of M where

Hr = Hr+1 = 0.

Hence equality holds in (1.1), for all P ∈M/A. This means that all points in M/A
are umbilic. That is, for all P ∈M/A,

k1(P ) = ... = kn(P ) = a(P ).

Thus,
0 = Sr(P ) = ar(P ).

This implies that all points of M/A are totally geodesic, and hence f is constant
along each connected component of M/A. Since along the boundary of those sets,
f = 0, we conclude that f is identically zero on M , that is, M is totally geodesic
(see Theorem 1 of [9]). �
Remark. For the case r = 1, we observe that Sr−1 = S0 = 1 does not change sign.
Hence, the theorem is a generalization of Theorem 2 in [9], in the minimal case.
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4. The case Hr+1 > 0

Let us consider the case Hr+1 > 0. We have the following result:

Theorem 4.1 (Theorem B of the Introduction). Let Mn → Sn+1 be a compact
and connected hypersurface of Sn+1 with constant positive (r + 1)-mean curvature
Hr+1, for some r = 0, ..., n − 2. Assume that the Gauss image of M is contained
in a closed hemisphere, Hr ≥ 0 and that the following inequality holds:

(4.1) H1Hr ≥ Hr+1.

Then M is totally umbilic.

Proof. By Proposition 2.1, we have that for a fixed α ∈ Rn+2, the function f =
〈N(P ), α〉 satisfies

(4.2)
∫
M

[(n− r − 1)S1Sr+1 − n(r + 2)Sr+2]f dM = 0.

We are going to prove that the integrand has a fixed sign, for some α ∈ Rn+2. Since
the Gauss image of M lies in a closed hemisphere, there exists a vector α ∈ Rn+2

such that

(4.3) f(P ) = 〈N(P ), α〉 ≥ 0, ∀P ∈M.

On the other hand, the relation H1Hr ≥ Hr+1 implies that H1Hr+1 ≥ Hr+2. In
fact, by using equation (1.1), one has that

(4.4) HrHr+2 ≤ H2
r+1 ≤ HrH1Hr+1.

Observe that Hr 6= 0; otherwise, the last inequality implies that Hr and Hr+1 are
equal to zero, which is a contradiction. Hence, Hr > 0 and we can divide (4.4) by

(4.5) H1Hr+1 ≥ Hr+2.

Since
Hi =

Si(
n
i

) ,
by (4.5), one has

S1

n

Sr+1(
n
r+1

) ≥ Sr+2(
n
r+2

) .
This implies that

(4.6) (n− r − 1)S1Sr+1 − n(r + 2)Sr+2 ≥ 0.

The inequalities (4.3) and (4.6) imply that

[(n− r − 1)S1Sr+1 − n(r + 2)Sr+2]f ≥ 0.

Thus, by (4.2), we have that

[(n− r − 1)S1Sr+1 − n(r + 2)Sr+2]f = 0.

Observe that the function f is not identically zero, since in this case, M has to be
totally geodesic (see Theorem 1 of [9]) and hence Hr = 0, which is a contradiction.
Let B ⊂M be the open and nonempty set where f > 0. Along B, we have

(n− r − 1)S1Sr+1 − n(r + 2)Sr+2 = 0,

that is, equality holds in (4.6). This means that equality also holds in (1.1), since
this inequality was used to obtain (4.6). Hence, all points of B are umbilic. In this
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case, M has an elliptic point and Sr = constant > 0. Thus, by Proposition 1.2, the
operator Lr is an elliptic operator. By the principle of analytic continuation, since
M is totally umbilic in an open set, it has to be totally umbilic. �

Observe that in the case r = 2, part of the hypotheses of Theorems 3.1 and 4.1
is trivially satisfied, and we have the following result.

Corollary 4.1 (Theorem C of the Introduction). Let Mn be a compact orientable
hypersurface of the sphere with constant scalar curvature H2 ≥ 0. In the case
H2 = 0, suppose also that H1 does not change sign. If the Gauss image of M lies
in a closed hemisphere of Sn+1, then M is totally umbilic.

Proof. The case H2 = 0 is the statement of Theorem 3.1. For the case H2 > 0, the
hypothesis (4.1) in Theorem 4.1 reads

H2
1 ≥ H2,

which is always true by equation (1.1). The above equation also says that H1 is
different from zero on M . Hence we can choose the orientation of M so that H1 > 0.
The sign of H2 does not depend on the orientation; thus the result follows directly
from Theorem 4.1.

We now give conditions that imply condition (4.1). First of all, if Hi is nonneg-
ative for i = 1, ..., r − 1, then (4.1) holds. This fact was stated in [12], p. 232, and
we are including its proof here for the sake of completeness. Let (x1, ..., xn) be an
n-uple of real numbers, and let Sr be the r-symmetric function of the x1, ..., xn.
Let Hr be defined by

Hr =
1(
n
r

)Sr =
1(
n
r

) ∑
i1<...<ir

xi1 ...xir .

Proposition 4.1. With the above notation, if Hi ≥ 0 for all i = 1, ..., r − 1, then

(4.7) H1Hi+1 ≥ Hi+2, ∀i = 1, ..., r − 1.

Moreover,

(4.8) (n− i− 1)S1Si+1 − n(i+ 2)Si+2 ≥ 0, ∀i = 1, ..., r − 1.

Proof. By using (1.1), we have that

HrHr−2 ≥ H2
r−1 ≥ 0

and
Hr+1Hr−1 ≥ H2

r ≥ 0.

Since Hr−2 and Hr−1 are nonnegative, it follows that Hr ≥ 0 and Hr+1 ≥ 0. Let
us prove (4.7). We will argue by induction on i. By using (1.1), with i = 1, and
the fact that H0 = 1, we obtain

H2
1 ≥ H0H2 = H2.

Hence (4.7) holds for i = 0. By induction, let us suppose that

(4.9) H1Hi ≥ Hi+1.

This implies, using equation (1.1), that

(4.10) HiHi+2 ≤ H2
i+1 ≤ Hi+1H1Hi.
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If Hi = 0, then (4.9) implies that Hi+1 ≤ 0. Since Hi+1 ≥ 0, it follows that
Hi+1 = 0. Thus we have equality in (1.2), which implies that xk = 0, ∀k = 1, ..., n.
Hence (4.7) holds in this case.

Let us suppose Hi > 0. In this case, we can divide (4.10) by Hi and obtain

(4.11) H1Hi+1 ≥ Hi+2,

and we finish the proof of (4.7). In order to obtain (4.8), just observe that

Hi =
Si(
n
i

) .
Then, by (4.11), one has

S1

n

Si+1(
n
i+1

) ≥ Si+2(
n
i+2

) .
This implies that

(n− i− 1)S1Si+1 − n(i+ 2)Si+2 ≥ 0, ∀i = 1, ..., r − 2. �

Thus, we have the following result.

Corollary 4.2. Let Mn → Sn+1 be a compact and connected hypersurface of Sn+1

with constant positive r-mean curvature Hr, for some r = 1, ..., n− 1. Assume that
the Gauss image of M is contained in a closed hemisphere and that Hi ≥ 0 for all
i = 1, ..., r − 1. Then M is totally umbilic.

In the following proposition (see Proposition 2.3 in [2]) we have another geometric
condition that gives Hi ≥ 0 for all i = 1, ..., r − 1.

Proposition 4.2. Let Mn be a connected compact Riemannian manifold, and let
x : Mn → Sn+1 be an isometric immersion. If Hr > 0 and x(M) is contained in
an open hemisphere of Sn+1, then Hi > 0 for all i = 1, ..., r − 1.

This and Corollary 4.2 imply

Corollary 4.3. Let x : Mn → Sn+1 be an isometric immersion of a compact and
connected hypersurface of Sn+1 with constant positive r-mean curvature Hr, for
some r = 1, ..., n− 1. Assume that the Gauss image of M is contained in a closed
hemisphere and that x(M) is contained in an open hemisphere of Sn+1. Then M
is totally umbilic.
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