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Abstract. We obtain upper bounds for the first eigenvalue of the lin-

earized operator Lr of the r-mean curvature of a compact manifold
immersed in a space of constant curvature δ. By the same method, we
obtain an upper bound for the first eigenvalue of the stability operator
associated to Lr when δ < 0.

1. Introduction

Let Mn be a compact, connected, orientable Riemannian manifold, isomet-
rically immersed in a simply connected space form M

n+1
(δ), with constant

sectional curvature δ. We obtain upper bounds for the first eigenvalue of some
elliptic operators defined on M (see below). In 1988, Heintze [H] proved that

λ∆
1 ≤ nδ + nmaxH2

1

for manifolds immersed in a hyperbolic space (δ < 0) and that

λ∆
1 ≤ nδ +

n

volM

∫
M

H2
1

for manifolds immersed in a sphere (δ > 0), contained in a convex ball of
radius r ≤ π

4
√
δ

(if δ > 0). Here λ∆
1 denotes the first eigenvalue of the Lapla-

cian on M and H1 denotes the mean curvature. (In fact, Heintze considered
as ambient spaces Riemannian manifolds with curvature bounded above by
δ.) The latter inequality was obtained by Reilly [R] in 1977 for manifolds
immersed in Euclidean space (δ = 0), and generalized to arbitrary δ by El
Soufi and Ilias [ESI] in 1992. In all of these estimates, equality holds pre-
cisely when M is a geodesic sphere of M . Both El Soufi and Ilias [ESI] and
Heintze [H] applied these bounds to obtain the stability theorems of Barbosa
and do Carmo [B-dC] for immersions in Rn+1, and of Barbosa, do Carmo,
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and Eschenburg [B-dC-E] for immersions in Sn+1 and Hn+1. (The restriction
r ≤ π

4
√
δ

in the case of Sn+1 in [H] is stronger than that in [B-dC-E].)
We first introduce some notation. Consider the elementary symmetric func-

tions Sr (r = 1, . . . , n) of the principal curvatures and the r-mean curvatures

Hr =
Sr(
n
r

) ·
Let A be the second fundamental form associated to a globally defined normal
unit vector field N . We define an operator Lr by

Lrf = div(Pr∇Mf),

where ∇Mf stands for the gradient of f in M and Pr denotes the classical
Newton transformation defined inductively by

P0 = I,

Pr = SrI −APr−1.

Each Pr is a self-adjoint operator whose trace is c(r)Hr, where c(r) = (n −
r)
(
n
r

)
(see [B-C, Lemma 2.1]). Note that L0 = ∆.

In general, the operator Lr is not elliptic and some conditions are necessary
to ensure the presence of ellipticity. However, in the theorems below, the
hypotheses will guarantee that Lr is elliptic; see, for instance, the remarks
made at the beginning of the proofs of Theorems 1.1 and 1.2. Thus we can
consider the first eigenvalue λLr1 of Lr. This is the object we study here.

Assume that Sr+1 is constant. Following [B-C] we say that the immersion
is r-stable if Ir(f) ≥ 0 for any f : M → R satisfying

∫
M
f dM = 0, where

Ir(f) = −
∫
M

f

{
Lr(f) +

[
n

r + 1
c(r)H1Hr+1 − c(r + 1)Hr+2 + δc(r)Hr

]
f

}
.

In 1993, Alencar, do Carmo, and Rosenberg [A-dC-R, Theorem 1.1] proved
that if Hr+1 is positive (but not necessarily constant) on M , then

λLr1

∫
M

Hr ≤ c(r)
∫
M

H2
r+1,

for manifolds immersed in Euclidean space, and equality holds if and only if
M is a sphere. They applied this result to obtain the theorem of Barbosa
and do Carmo [B-dC] and a theorem of Alencar, do Carmo, and Colares
[A-dC-C]. They also proved that an immersion of a hypersurface in Rn+1

wth Hr+1 constant is r-stable if and only if M is a sphere. In 1995, Grosjean
[G1] obtained sharp integral bounds for λLr1 of immersions in any space form
M(δ), under the additional hypothesis of convexity of the immersion.

In this paper, inspired by Heintze’s work [H], we obtain sharp upper bounds
for λLr1 without the convexity hypothesis, in both the hyperbolic and spherical
spaces. We prove the following theorems:
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Theorem 1.1. Let Mn be a compact manifold isometrically immersed in
M

n+1
(δ), with δ < 0. If Hr+1 > 0 on M , then

λLr1 ≤ δc(r) minHr + c(r)
maxH2

r+1

minHr
,

and equality holds if and only if M is a geodesic sphere.

Theorem 1.2. Let Mn be a compact manifold isometrically immersed in
M

n+1
(δ), with δ > 0, and suppose M is contained in a convex ball of radius

π
4
√
δ
. If Hr+1 > 0 on M , then

λLr1 ≤
(
δc(r) + c(r)

maxH2
r+1

minH2
r

) ∫
Hr

volM
,

and equality holds if and only if M is a geodesic sphere.

Furthermore, using the same techniques, we obtain an upper bound for the
first eigenvalue of the operator Lr − q, where

q = c(r + 1)Hr+2 −
nc(r)
r + 1

H1Hr+1 − δc(r)Hr.

From this the r-stability theorem for manifolds immersed in a hyperbolic
space, proved in 1997 by Barbosa and Colares [B-C], will follow. (In fact, in
[B-C] the r-stability theorem was proved for any manifold M

n+1
(δ).)

To state this theorem, we need some notation. We denote by sδ the solution
of the differential equation y′′ + δy = 0, with the initial conditions y(0) =
0, y′(0) = 1. Set cδ = s′δ; then c′δ = −δsδ and c2δ + δs2

δ = 1. We have
sδ(t) = 1√

−δ sinh(
√
−δt) and cδ(t) = cosh(

√
−δt) in the case δ < 0, and

sδ(t) = 1√
δ

sin(
√
δt), cδ(t) = cos(

√
δt) in the case δ > 0. Note that if δ = 0,

sδ(t) = t.
We will prove the following result:

Theorem 1.3. If δ < 0 and Hr+1 > 0, there exists a point p0 ∈ M such
that, if d = d(p0, ·) denotes the distance function from p0 in M , then

λ1(Lr − q) ≤ c(r)

∫
M

(
maxH2

r+1

minHr
−H1Hr+1

)
s2
δ(d)∫

M

s2
δ(d)

,

and equality holds precisely when M is a geodesic sphere.

As a consequence, we obtain:

Corollary 1.4 ([B-C]). The only r-stable compact immersed hypersur-
faces in a hyperbolic space, with constant Hr+1 > 0, are the geodesic spheres.
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Remark 1.5. After writing this paper, we received a preprint of J.F.
Grosjean (see [G2]) who obtained, independently, the results presented here.

We want to thank the referee for useful suggestions.

2. Preliminaries

Throughout this paper, we use the notations defined in the Introduction.
Let Mn and M

n+1
(δ) be as before, let p0 ∈ M , and let d = d(p0, ·) be the

distance function from p0 in M . Let xi (i = 1, . . . , n + 1) be the normal
coordinates centered in p0, with respect to some orthonormal basis in Tp0M .
We denote by ∇ and ∇M the gradients taken in M and M , respectively.

Lemma 2.1. Suppose x ∈M . Assume x ∈ B
(
p0,

π
2
√
δ

)
in the case δ > 0.

If u, v ∈ TxM and v is orthogonal to ∇d, then

s2
δ(d)
d2

n+1∑
i=1

(〈∇xi, u〉〈∇xi, v〉) = 〈u, v〉.

Proof. The map

Lx̃ =
(
d expp0

)
x̃

: Tp0M → TxM,

where expp0
(x̃) = x, is a linear isomorphism. Using 〈∇xi, u〉 = (L−1

x̃ u)(xi),
we obtain

s2
δ(d)
d2

n+1∑
i=1

(〈∇xi, u〉〈∇xi, v〉) =
s2
δ(d)
d2
〈L−1

x̃ (u), L−1
x̃ (v)〉.

Since Lx̃ is a radial isometry, L−1
x̃ (v) is tangent to the sphere of radius |x̃| in

Tp0M . Further, L−1
x̃ (u) = w̃ + r̃, where w̃ is tangent and r̃ is orthogonal to

this sphere in Tp0M . Hence, 〈L−1
x̃ (u), L−1

x̃ (v)〉 = 〈w̃, ṽ〉, where ṽ = L−1
x̃ (v).

Let γ : [0, d]→M be the normalized geodesic with

γ(0) = p, γ(d) = x, γ′(0) =
x̃

|x̃|
,

where |x̃| = d. Let Jv(t), Jw(t) be Jacobi fields along γ such that

Jv(0) = Jw(0) = 0 J ′v(0) =
ṽ

|ṽ|
, J ′w(0) =

w̃

|w̃|
.

Since M has constant sectional curvature,

(1) 〈Jv(d), Jw(d)〉 =
s2
δ(d)
|ṽ||w̃|

〈ṽ, w̃〉.

Recall also that

Jv(t) =
(
d expp0

)
t x̃d

(
t
ṽ

|ṽ|

)
, Jw(t) =

(
d expp0

)
t x̃d

(
t
w̃

|w̃|

)
.
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Hence, 〈Jv(d), Jw(d)〉 = d2

|ṽ||w̃| 〈v, w〉, where w = Lx̃(w̃), and using (1), we

obtain 〈v, w〉 = s2δ
d2 〈ṽ, w̃〉. Thus

s2
δ

d2

n+1∑
i=1

〈∇xi, u〉〈∇xi, v〉 =
s2
δ

d2
〈ṽ, w̃〉 = 〈v, w〉 = 〈v, u〉,

which concludes the proof. �

Define the position vector X of Mn in M
n+1

(δ) with respect to p0 by
X = sδ(d)∇d. Denote by XT the component of X tangent to M ; i.e., XT =
sδ(d)∇Md. Observe that

∇Mcδ = −δXT .

Lemma 2.2. With the above notation,

n+1∑
i=1

〈
Pr∇M

(sδ
d
xi

)
,∇M

(sδ
d
xi

)〉
+ δ〈PrXT , XT 〉 = c(r)Hr.

Proof. Using the fact that Pr is self-adjoint, we obtain〈
Pr∇M

sδ
d
xi,∇M

sδ
d
xi

〉
=
x2
i

d2

(
cδ −

sδ
d

)2

〈Pr∇Md,∇Md〉

+ 2
xisδ
d2

(
cδ −

sδ
d

)
〈Pr∇Md,∇Mxi〉

+
s2
δ

d2
〈Pr∇Mxi,∇Mxi〉.

Since
∑
i

xi∇xi = d∇d and

〈Pr∇Md,∇Mxi〉 = 〈Pr∇Md,∇xi〉,

because Pr∇Md is tangent to M , we have

n+1∑
i=1

〈
Pr∇M

sδ
d
xi,∇M

sδ
d
xi

〉
=
(
c2δ −

s2
δ

d2

)
· 〈Pr∇Md,∇Md〉+

s2
δ

d2

n+1∑
i=1

〈Pr∇Mxi,∇Mxi〉.

Further

δ〈PrXT , XT 〉 = δs2
δ〈Pr∇Md,∇Md〉.
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Thus

n+1∑
i=1

〈
Pr∇M

sδ
d
xi,∇M

sδ
d
xi

〉
+ δ〈PrXT , XT 〉

=
s2
δ

d2

n+1∑
i=1

〈Pr∇Mxi,∇Mxi〉+
(

1− s2
δ

d2

)
〈Pr∇Md,∇Md〉.

Now let e1, . . . , en ∈ TpM be an orthonormal basis such that en lies in the
direction of ∇Md (if ∇Md 6= 0). Then there are numbers λ and µ satisfying
en = λ∇d + µe∗n, where e∗n is a unit vector orthogonal to ∇d. From this we
easily obtain ∇Md = λen and (e∗n)T = µen.

A simple calculation gives

n+1∑
i=1

〈
Pr∇M

(sδ
d
xi

)
,∇M

(sδ
d
xi

)〉
+ δ〈PrXT , XT 〉

=
s2
δ

d2

n−1∑
j=1

n+1∑
i=1

(〈∇xi, Prej〉〈∇xi, ej〉) +
s2
δ

d2

n+1∑
i=1

〈Pr∇Mxi, en〉〈∇Mxi, en〉

+
(

1− s2
δ

d2

)
λ2〈Pren, en〉.

Since ej is orthogonal to ∇d for all j = 1, . . . , n− 1, we can apply Lemma 2.1
and obtain

(2)
n+1∑
i=1

〈
Pr∇M

(sδ
d
xi

)
,∇M

(sδ
d
xi

)〉
+ δ〈PrXT , XT 〉

=
n−1∑
j=1

〈Prej , ej〉+
s2
δ

d2

n+1∑
i=1

〈Pr∇Mxi, en〉〈∇Mxi, en〉

+
(

1− s2
δ

d2

)
λ2〈Pren, en〉.

Observing that, for any x ∈M and any u ∈ TxM ,

n+1∑
i

〈∇xi, u〉〈∇xi,∇d〉 = 〈u,∇d〉,

we obtain, after some manipulation,

n+1∑
i=1

〈Pr∇Mxi, en〉〈∇Mxi, en〉 = λ〈Pren,∇d〉+
n+1∑
i=1

〈∇xi, Pren〉〈∇xi, µe∗n〉.
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Applying Lemma 2.1 again, because e∗n is orthogonal to ∇d, the right-hand
side of the last equation is equal to

λ〈Pren,∇d〉+
d2

s2
δ(d)

µ〈Pren, e∗n〉.

Substituting this in (2), we obtain

n+1∑
i=1

〈
Pr∇M

(sδ
d
xi

)
,∇M

(sδ
d
xi

)〉
+ δ〈PrXT , XT 〉

=
n∑
j=1

〈Prej , ej〉 = trace(Pr) = c(r)Hr. �

Lemma 2.3. If Hr+1 > 0 and cδ ≥ 0, then∫
M
cδ∫

M
sδ
≤ maxHr+1

minHr
.

Proof. Recall that if Hr+1 > 0, then Hj > 0, where 1 ≤ j ≤ r (see [B-C,
Proposition 3.2]). Recall also Minkowski’s formula (see [A-C])∫

M

[Hrcδ +Hr+1〈X,N〉] = 0.

Then, by the Cauchy-Schwarz inequality,∫
M

Hrcδ = −
∫
M

Hr+1〈X,N〉 ≤
∫
M

Hr+1|X|

=
∫
M

Hr+1sδ ≤ (maxHr+1)
∫
M

sδ.

Since cδ ≥ 0, we also have (minHr)
∫
M
cδ ≤

∫
M
Hrcδ. From these inequalities

we obtain

(minHr)
∫
M

cδ ≤ (maxHr+1)
∫
M

sδ.

This concludes the proof. �

3. Proofs of Theorems 1.1, 1.2, 1.3 and Corollary 1.4

We are now in a position to prove the upper bounds for the first eigen-
value of Lr. Our proofs use the Rayleigh quotient, applied with suitable test
functions.

In all proofs, p0 ∈M will be a point such that∫
M

sδ(d)
d

xi = 0 (i = 1, . . . , n+ 1),
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where d = d(p0, ·). The existence of such a point, assuming that M lies in a
convex ball of M , can be verified by a standard argument. Namely, if M lies
in a convex ball B, then

Yq =
∫
M

sδ(d(q, p))
d(q, p)

exp−1
q (p)dp ∈ TqM

defines a vector field in a neighborhood of B which, at the boundary, points
towards the interior of B. Thus, Y has a zero in B, and if we take p0 as this
zero, then p0 has the required property. Note that if B has radius less than
π

4
√
δ
, then M lies in a ball of radius < π

2
√
δ

around p0. As a consequence,
cδ ≥ 0.

Proof of Theorem 1.1. Since Hr+1 > 0 and M is compact, Lr is elliptic
(see [B-C, Proposition 3.2]).

Using the Rayleigh quotient with the test functions sδ(d)
d xi, we obtain

λLr1

∫
M

s2
δ = λLr1

∫
M

n+1∑
i=1

(sδ
d
xi

)2

(3)

≤
∫
M

n+1∑
i=1

〈
Pr∇M

(sδ
d
xi

)
,∇M

(sδ
d
xi

)〉
= c(r)

∫
M

Hr − δ
∫
M

〈PrXT , XT 〉,

where the last equality follows from Lemma 2.2.
From Stokes’ theorem it follows that∫

M

fLrg + 〈Pr∇Mf,∇Mg〉 = 0.

Applying this with f = g = cδ and using the relation ∇Mcδ = −δXT , we
obtain

δ

∫
M

〈PrXT , XT 〉 = −1
δ

∫
M

cδLr(cδ).

Hence,∫
M

n+1∑
i=1

〈
Pr∇M

(sδ
d
xi

)
,∇M

(sδ
d
xi

)〉
= c(r)

∫
M

Hr +
1
δ

∫
M

cδLr(cδ).

It is known that (see [A-C, Lemma 1])

Lr(cδ) = −δ [c(r)Hrcδ + c(r)〈X,N〉Hr+1] .

From this and the inequality

−〈X,N〉 ≤ |X| = sδ,
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we obtain

n+1∑
i=1

〈
Pr∇M

(sδ
d
xi

)
,∇M

(sδ
d
xi

)〉
≤ δc(r)

∫
M

s2
δHr − c(r)

∫
M

cδ〈X,N〉Hr+1

≤ δc(r)
∫
M

s2
δHr + c(r)

∫
M

cδsδHr+1

≤ δc(r)
∫
M

s2
δHr + c(r) maxHr+1

∫
M

cδsδ.

If δ ≤ 0, it is also known that (see Lemma 2.8 in [H])∫
M

sδ

∫
M

sδcδ ≤
(∫

M

s2
δ

)∫
M

cδ.

Using this inequality and Lemma 2.2, we have

n+1∑
i=1

〈
Pr∇M

(sδ
d
xi

)
,∇M

(sδ
d
xi

)〉
(4)

≤ δc(r)
∫
M

s2
δHr + c(r)

(maxHr+1)2

minHr

∫
M

s2
δ

≤ δc(r)(minHr)
∫
M

s2
δ + c(r)

(maxH2
r+1)

minHr

∫
M

s2
δ .

By applying (3), we obtain

λLr1

∫
M

s2
δ ≤ δc(r)(minHr)

∫
M

s2
δ + c(r)

maxH2
r+1

minHr

∫
M

s2
δ .

Dividing both sides by
∫
M
s2
δ gives the desired estimate.

If equality holds, then we necessarily have

−〈X,N〉 = |X||N |,

and this implies that ∇d is orthogonal to M . Thus, d is constant on M , and
therefore M is a geodesic sphere around p0. �

Proof of Theorem 1.2. Since Hr+1 > 0 and M is contained in a convex
ball, Lr is again an elliptic operator (see [B-C, Proposition 3.2]). Put

c =
1

volM

∫
M

cδ, so
∫
M

(cδ − c)√
δ

= 0.

Recall that sδ(d) = 1√
δ

sin(
√
δd) and cδ(d) = cos(

√
δd), so |c| < 1.
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Using the Rayleigh quotient with sδ(d)
d xi and cδ−c√

δ
as test functions, we

obtain

λLr1

∫
M

[
s2
δ +

(cδ − c)2

δ

]
≤
∫
M

n+1∑
i=1

〈
Pr∇M

sδ
d
xi,∇M

sδ
d
xi

〉
+
∫
M

〈
Pr∇M

(
cδ − c√

δ

)
,∇M

(
cδ − c√

δ

)〉

=
∫
M

[
n+1∑
i=1

〈
Pr∇M

(sδ
d
xi

)
,∇M

(sδ
d
xi

)〉
+ δ〈PrXT , XT 〉

]
= c(r)

∫
Hr,

where the last equality follows from Lemma 2.2.
Further, a direct calculation gives∫

M

[
s2
δ +

(cδ − c)2

δ

]
=

1
δ

(volM)(1− c2).

Thus,

(5) λLr1 ≤
(

1
1− c2

)
δ
c(r)

volM

∫
M

Hr.

We next prove that
1

1− c2
≤ 1 +

1
δ

maxH2
r+1

minH2
r

.

By Lemma 2.3 we have

c2 =
1

(volM)2

(∫
M

cδ

)2

≤ 1
(volM)2

(
maxHr+1

minHr

)2(∫
M

sδ

)2

,

and the Cauchy-Schwarz inequality gives(∫
M

sδ

)2

≤
(∫

M

s2
δ

)
volM.

Therefore

(1− c2)
(

1 +
1
δ

maxH2
r+1

minH2
r

)
≥ 1 +

1
δ

maxH2
r+1

minH2
r

− 1
volM

maxH2
r+1

minH2
r

∫
M

s2
δ − c2 ·

1
δ

maxH2
r+1

minH2
r

≥ 1 +
1
δ

maxH2
r+1

minH2
r

− 1
volM

maxH2
r+1

minH2
r

∫
M

s2
δ −

(
1

volM

∫
M

c2δ

)
1
δ

maxH2
r+1

minH2
r

= 1 +
maxH2

r+1

minH2
r

(
1
δ
− 1
δ volM

∫
M

(
δs2
δ + c2δ

))
= 1,
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where the last inequality follows from Cauchy-Schwarz inequality. Hence,

1
1− c2

≤ 1 +
1
δ

maxH2
r+1

minH2
r

.

From (5), we have

λLr1 ≤
(
δ +

maxH2
r+1

minH2
r

)
c(r)

∫
Hr

volM
.

If equality holds, we also have equality in Lemma 2.3, so −〈X,N〉 = |X||N |
and therefore ∇d is orthogonal do M . Hence, d is constant on M , and there-
fore M is a geodesic sphere around p0. �

Proof of Theorem 1.3. Using the Rayleigh quotient for the operator Lr−q,
with sδ

d xi as test functions, we obtain

(6) λ1(Lr − q)
∫
M

s2
δ ≤

∫
M

n+1∑
i=1

(sδ
d
xi

) [
−Lr

(sδ
d
xi

)
+ q

(sδ
d
xi

)]
=
∫
M

n+1∑
i=1

〈
Pr∇M

(sδ
d
xi

)
,∇M

(sδ
d
xi

)〉
+
∫
M

qs2
δ .

By (4) we have∫
M

n+1∑
i=1

〈
Pr∇M

(sδ
d
xi

)
,∇M

(sδ
d
xi

)〉
≤ δc(r)

∫
M

s2
δHr + c(r)

maxH2
r+1

minHr

∫
M

s2
δ .

Applying this to (6), we obtain

λ1(Lr − q)
∫
M

s2
δ ≤ c(r)

(∫
M

s2
δ

)
maxH2

r+1

minHr

+ c(r + 1)
∫
M

Hr+2s
2
δ −

nc(r)
r + 1

∫
M

H1Hr+1s
2
δ .

SinceHr+2 ≤ H1Hr+1, with equality at umbilical points (see [A-dC-R, p. 392]),
we obtain

λ1(Lr − q)
∫
M

s2
δ ≤ c(r)

(∫
M

s2
δ

)
maxH2

r+1

minHr
− c(r)

∫
M

H1Hr+1s
2
δ ,

because c(r + 1)− nc(r)
r+1 = −c(r).

Dividing both terms by
∫
M
s2
δ , the desired inequality follows. The case

when equality holds is handled in the same way as in the previous cases. �
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Proof of Corollary 1.4. Let Mn be a compact hypersurface, immersed in
M

n+1
(δ), where δ < 0, with Hr+1 > 0 and constant. Suppose M is r-stable,

that is to say, ∫
M

f(−Lr + q)(f) ≥ 0 when
∫
M

f = 0.

Taking for f an eigenfunction of Lr − q belonging to λLr−q1 , we obtain

λLr−q1

∫
M

f2 ≥ 0,

and thus

(7) λLr−q1 ≥ 0.

Also, if Hr+1 > 0, then Hj > 0 for all j = 1, . . . , r (see [B-C, Proposition 3.1])

and Hr ≥ H
r
r+1
r+1 (see [M-R, Lemma 1]). Hence,

(8)
maxH2

r+1

minHr
≤
H2
r+1

H
r
r+1
r+1

= H
r+2
r+1
r+1 .

Since H1 ≥ H
1
r+1
r+1 , it follows that

(9) H
r+2
r+1
r+1 −H1Hr+1 ≤ 0,

with equality at umbilical points.

By (7), (8), (9) and Theorem 1.3, we conclude that H
r+2
r+1
r+1 −H1Hr+1 = 0

everywhere, and so M is a geodesic sphere. �
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