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Integral Formulas for ther-Mean Curvature
Linearized Operator of a Hypersurface
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Abstract. For a normal variation of a hypersurfaceMn in a space formQn+1
c by a normal vector

field fN , R. Reilly proved:

d

dt
Sr+1(t)

��
t=0

= Lrf + (S1Sr+1 � (r + 2)Sr+2)f + c(n� r)Srf;

whereLr (0 � r � n � 1) is the linearized operator of the(r + 1)-mean curvatureSr+1 of Mn

given byLr = div(Prr); that is,Lr = the divergence of therth Newton transformationPr of the
second fundamental form applied to the gradientr, andL0 = � the Laplacian ofMn.

From the Dirichlet integral formula forLr,Z
Mn

(f Lrg + hPrrf;rgi) = 0;

new integral formulas are obtained by making different choices off and g, generalizing known
formulas for the Laplacian. The method gives a systematic process for proofs and a unified treatment
for some Minkowski type formulas, viaLr.
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1. Introduction

Let x:Mn ! R
n+1 be an isometric immersion of a compact oriented Riemannian

manifoldMn into the Euclidean spaceRn+1 with inner producth ; i and volume
elementdM . The Dirichlet integral formula for the Laplacian� of Mn,Z

Mn
(f �g + hrf;rgi)dM = 0;

gives rise to useful integral formulas for conveniently chosen functionsf andg on
Mn. For example, iff = 1 andg = hx; xi =2 we obtain the Minkowski formulaZ

Mn
(1+H1(hx;Ni)dM = 0;
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whereN a unit normal vector field onMn andH1 is the normalized mean curvature
of x given byH1 = (1=n)S1 with

S1 =
nX
i=1

�i

and�1; : : : ; �n the eigenvalues of the second fundamental formB of x. Here
�i = hreiei; Ni ;1� i � n; wheree1; : : : ; en are the corresponding eigenvectors
andr is the covariant derivative of the ambient space (see Section 2).

If x:Mn ! Qn+1
c is an isometric immersion into a simply connected space

form Qn+1
c , that is,Rn+1, Sn+1 andH n+1 with curvaturec = 0, c > 0 andc < 0,

respectively, letXt be a normal variation ofx andS1(t) the mean curvature of
Xt(M

n). It is known that

d

dt
S1(t)jt=0 = �f + jBj2 f + cn f;

where f = h@Xt=@tjt=0; Ni. This shows that the Laplacian is the linearized
operator ofS1 arising from normal variations ofx. For ther-mean curvature ofx
given by

Sr =
X

i1<���<ir

�i1 : : : �ir ; 1� r � n;

Reilly [20] proved that

d

dt
Sr+1(t)jt=0 = Lrf + (S1Sr+1 � (r + 2)Sr+2)f + c(n� r)Srf;

whereLr is the linearized operator ofSr+1 arising from normal variations ofx
given by

Lrf = div(Prrf)
andS0 = 1. Hererf and div are, respectively, the gradient off and the divergence
operator onMn andPr is the rth Newton transformation, a polynomial in the
second fundamental formB of x defined inductively by

P0 = I;

Pr = SrI �BPr�1:

It follows thatB andPr have the same eigenvectors and each eigenvalue ofPr is
the partial derivative ofSr+1 with respect to the corresponding eigenvalue ofB

(see Section 3). The Dirichlet integral formula forLr is thenZ
Mn

(f Lrg + hPrrf;rgi)dM = 0; (1.1)
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wheref andg are functions onMn.
Denote by grads the gradient of the distance functions(�) = d(�; p0) in Qn+1

c ,
wherep0 2 Qn+1

c is a fixed point. Note thats is differentiable, except atp0 and
�p0 for c > 0. Define the position vectorX of Mn in Qn+1

c , with respect top0, by

X = Sc(s) grads;

with Sc(s) = s, sin(s
p
c)=

p
c or sinh(s

p�c)=p�c, according toc = 0, c > 0 or
c < 0 [2]. Note that forc = 0, we haveX = x. Denote�c(s) = (d=ds)Sc(s) and
XT = the component ofX tangent toMn.

We will prove the following

THEOREM 1. Let x:Mn ! Qn+1
c be an isometric immersion of a compact

oriented Riemannian manifoldMn and0� p � n, 1� q � n integers. Then, for
anyc,

(a)
Z
Mn

�
hX;Nip

��hX;Xi
2

�q�1 �
�c((n� r)Sr�c + (r + 1)Sr+1 hS;Ni)

� c

n
jXT j2(n� r)Sr

�
+

(q � 1)
n

�
X;X

2

�q�2

�2
c jXT j2(n� r)Sr

�

� p

n
hX;Nip�1

�hX;Xi
2

�q�1

�cjXT j2 (r + 1)Sr+1

�
dM = 0;

(b)
Z
Mn

�
hX;Nip

�
�q�1
c [(n� r)Sr�c + (r + 1)Sr+1 hS;Ni]

� c

n
(q � 1)�q�2

c jXT j2(n� r)Sr

�

� p

n
�q�1
c hX;Nip�1 jXT j2(r + 1)Sr+1

�
dM = 0;

(c)
Z
Mn

�� hX;Xi
2

�p�
hX;Niq�1 [�(r + 1)Sr+1�c � (S1Sr+1

� (r + 2)Sr+2) hX;Ni � h(rSr+1)
T ;Xi]

+
(q � 1)

n
hX;Niq�2 jXT j2(S1Sr+1 � (r + 2)Sr+2)

�

� p

n

�hX;Xi
2

�p�1

hX;Niq�1 �cjXT j2(r + 1)Sr+1

�
dM = 0:

These formulas are obtained choosing firstf = hX;Nip andg =
�hX;Xi=2

�q in
(1.1), for (a); then, we choosef = hX;Nip andg = �qc in (1.1) to obtain (b) for
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c 6= 0, and ifc = 0, (b) comes from (a) withq = 1; finally, takef =
�hX;Xi=2

�p
andg = hX;Niq in (1.1) to prove (c).

The formulas in (a) and (b) generalize Minkowski formulas. In fact, ifc = 0,
p = 0 andq = 1 in (a) we obtainZ

Mn
(Hr +Hr+1 hX;Ni)dM = 0; (1.2)

proved by Hsiung in [11], whereHr is the normalizedr-mean curvature given by

Hr = Sr=

�
n

r

�
. Forp = 0 andq = 1, (b) gives, for anyc,

Z
Mn

(Hr�c +Hr+1 hX;Ni)dM = 0; (1.3)

which yields a Minkowski formula inSn+1 andHn+1 first proved by Bivens [5]
(see also [7, 10, 14]). By takingc = 0 andq = 1 in (a) we obtain a formula proved
by Shahin [21] and Gardner [9, eq. (2.7)], which has been proved forn = 2 by
Chern in [6]. Forc = 0, similar formulas to (a) were proved in [22].

Thus, Theorem 1 generalizes all these formulas offering a systematic process for
the proofs. In fact, our method gives a unified treatment for some Minkowski type
formulas via the(r + 1)-mean curvature linearized operatorLr of a hypersurface
in a space form.

As an application of (b) withp = 0 andq = 1 we will prove the following

THEOREM 2.LetMn be a compact oriented Riemannian manifold andx:Mn !
Qn+1

c an isometric immersion with constant(r + 1)-mean curvatureHr+1, 0 �
r � n � 1. If c > 0 assume thatx(Mn) is contained in an open hemisphere of
Qn+1

c . Then, the set of points

W = Qn+1
c �

[
p2M

(Qn
c )p

which are omitted by the totally geodesic hypersurfaces(Qn
c )p tangent tox(Mn)

is non-empty if and only ifx(Mn) is a geodesic sphere.

For r = 0, this fact was proved by Alencar and Frensel in [2]. The condition that
W is non-empty in Theorem 2 is equivalent tor-stability of compact hypersurfaces
with Hr+1 constant inQn+1

c ; for the definitions ofr-stability, see Section 5. There
are several papers containing some generalization of Minkowski type formulas, for
example [12, 13, 18, 22]. We would like to thank Udo Simon for bringing to our
attention the work by Kohlman [14] and Simon [22].

2. Preliminaries

LetQn+1
c be a simply connected space form of constant curvaturec. Forc = 0, it

is the Euclidean spaceRn+1. We assume that forc > 0,Qn+1
c is the(n+1)-sphere
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with radius 1=
p
c in R

n+2 and forc < 0, Qn+1
c is the hyperbolic modelH n+1(c)

in R
n+2.

Let x:M ! Qn+1
c be an isometric immersion of ann-dimensional oriented

Riemannian manifoldMn. Let X be the position vector ofMn with origin at
p0 2 Qn+1

c , defined in the Introduction. By analogy with the Euclidean case, for a
unit normal vector fieldN we callhX;Ni the support function of the immersion
from the pointp0.

To fix notation, we letr be the covariant derivative inQn+1
c andB the second

fundamental form ofxwhose matrix with respect to an orthonormal basise1; : : : ; en
is given by

hij = hreiej ; Ni :
Fix a pointp0 2 Qn+1

c and consider the distance functions(�) = d(p0; �) in
Qn+1

c (Qn+1
c � fp0;�p0g for c > 0). Let e1; : : : ; en be an orthonormal local basis

onMn. Then

rei grads =
�c

Sc
(ei � hgrads; eii grads): (2.1)

In fact, if we decomposeei = h grads; eii grads + vi, wherevi is in the plane
spanned byei and grads, then

rei grads = h grads; eiirgrads grads+rvi grads =
�c

Sc
vi:

In the last equality we used thatvi is tangent to a geodesic circle of radiuss in
Qn+1

c whose geodesic curvature is�c=Sc.
From (2.1) we get

rejX = �c[ grads hgrads; eji+ ej � h grads; eji grads] = �cej : (2.2)

Hence

reirejX = �chijN +
X
k

hreiej; eki ek � c hX; eii ej ;

where(hij) is the matrix ofB with respect toei. For a geodesic framee1; : : : ; en
at a point ofRn+1 this becomes

reirej X = �chijN � c hX; eii ej : (2.3)

For the unit normal vector fieldN and geodesic framee1; : : : ; en we have

reirej N = rei

 
�
X
k

hjkek

!

= �
X
k

(reihjk)ek � h2
ij N:
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Therefore, by (2.2) and the Codazzi equations we get

reirej hX;Ni = ��chij �
X
k

(rekhij) hX; eki � h2
ij hX;Ni : (2.4)

3. The OperatorLr

Let x:M ! Qn+1
c be an isometric immersion of a Riemannian manifoldMn

with second fundamental formB and eigenvalues�1; : : : ; �n. The elementary
symmetric functionsSr associated toB are defined by

Sr =
X

i1<���<ir

�i1 : : : �ir ;

and ther-mean curvature

Hr =

�
1
�� n

r

��
Sr: (3.1)

SetS0 = H0 = 1 andSr = Hr = 0 if r =2 f0;1; : : : ; ng. The rth Newton
transformationPr is defined, inductively, by

P0 = I;

Pr = Sr I �B Pr�1:

SincePr is a polynomial inB, we have thatBPr = PrB andB andPr

are simultaneously diagonalizable. If�1; : : : ; �n are eigenvalues ofB, then the
eigenvalues ofPr are the partial derivatives ofSr+1 = Sr+1 (�1; : : : ; �n) with
respect to�1; : : : ; �n, denoted bySr (B1) ; : : : ; Sr (Bn); that is,

Sr
�
Bj

�
= Sr

�
�1; : : : ; �j�1; �j+1; : : : ; �n

�
;

the r-elementary symmetric function associated to the restrictionBj of B to the
subspace orthogonal to the corresponding eigenvectorej . Associated toPr we have
a second order differential operatorLr defined by

Lr f = trace(Pr Hess(f)); (3.2)

where Hess(f) is the Hessian matrix of the functionf :Mn ! R. It follows that

Lr f = div(Prr f);

wherer f is the gradient off and div is the the divergence operator onMn [17].

LEMMA 1. Let x:Mn ! Qn+1
c be an isometric immersion of ann-dimensional

oriented Riemannian manifoldMn into a space formQn+1
c . Then,

(a) Lr�c = �c[(n� r)Sr�c + (r + 1) hX;NiSr+1]; if c 6= 0;

(b)
1
2
LrjXj2 = �c[(n� r)Sr�c + (r + 1)Sr+1 hX;Ni]� c

n
jXT j2(n� r)Sr;

for anyc:
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Proof. A direct computation with a geodesic framee1; : : : ; en gives that

reirej�c = �c(�c�ij + hij hX;Ni):
Hence

Lr�c = �c
�X

ij

(Sr�ij � � � �+ (�1)r hrij)(�c�ij + hij hX;Ni)
�

= �c[�c tracePr + hX;Ni trace(B Pr)]

= �c[�c(n� r)Sr + (r + 1) hX;NiSr+1]:

In the last equality we have used that

tracePr = (n� r)Sr (3.3)

and

(r + 1)Sr+1 = trace(B Pr); (3.4)

which are proved in [3, lemma 2.1]. This proves (a).
To prove (b) we will use (2.2) and (2.3) to obtain

reirej hX;Xi = 2reihrejX;Xi
= 2hrejreiX;Xi + 2hrejX;reiXi
= 2�chijhX;Ni+ 2�2

c�ij � 2chX; eiihX; eji:
Hence, by (3.2) we get

1
2
LrjXj2 =

1
2

trace(Prreirej jXj2)

= trace(hijPr hX;Ni)�c + trace(Pr)�
2
c

� c trace(hX; eii hX; ejiPr)

= (n� r)Sr�
2
c + (r + 1)Sr+1 hX;Ni �c � c

n
jXT j2 (n� r)Sr;

by (3.3) and (3.4), if we choosee1; : : : ; en such that, at a point,hX; eii = hX; eji,
8 i; j. This finishes the proof of Lemma 1. 2

LEMMA 2. Let x:Mn ! Qn+1
c be an isometric immersion of an oriented Rie-

mannian manifoldMn into a space formQn+1
c . Then

Lr hX;Ni = �(r + 1)Sr+1 �c

� (S1Sr+1 � (r + 2)Sr+2) hX;Ni � h(rSr+1)
T ;Xi:
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Proof. By (3.2) and (2.4) we have

Lr hX;Ni = trace(Pr HesshX;Ni)

= ��c trace(Pr(hij))� trace

 
Pr

 X
k

rekhij hX; eki
!!

� trace(Pr(h
2
ij) hX;Ni):

By using (3.3), (3.4) and the fact that

trace(PrB
2) = S1Sr+1 � (r + 2)Sr+2

[3, lemma 2.1] one obtains

Lr hX;Ni = ��c(r + 1)Sr+1 � (S1Sr+1 � (r + 2)Sr+2) hX;Ni
�
X
k

trace(rekhijPr) hX; eki :

We claim that

trace

 X
k

(rekhijPr) hX; eki
!
= h(rSr+1)

T ;Xi:

In fact, by lemma A, (a) in [19] we have

rrek Sr+1 =
X
ij

hij(rek(Pr)ij)

=
X
j

�j(rekSr(Bj))

=
X
j

rek(�jSr(Bj))�
X
j

rek�j(Sr(Bj));

where�j andSr(Bj) are the eigenvalues ofB andPr, respectively.
On the other hand, by (3.4),

rek trace(BPr) = (r + 1)rekSr+1:

Hence,

rrekSr+1 =
X
j

rek(�jSr(Bj))�
X
j

rek�j(Sr(Bj))

= rek trace(BPr)�
X
j

rek�j(Sr(Bj))

= (r + 1)rekSr+1 � tracerekhij((Pr)ij):
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This yields

rekSr+1 = tracerekhij((Pr)ij)

and so,D
(rSr+1)

T ;X
E
= trace

X
k

rekhij((Pr)ij) hX; eki ;

proving the claim. By substituting this in the last expression ofLr hX;Ni above,
we finish the proof of the lemma. 2

For any differentiable functionsf andg onMn, the operatorLr satisfies

Lr fg = f Lr g + g Lr f + 2hPrrf;rgi (3.5)

and, ifMn is compact,Z
Mn

(f Lr g)dM =

Z
Mn

(g Lr f)dM; (3.6)

(see [17]). Hence,Z
Mn

(f Lr g + hPrrf;rgi)dM = 0: (3.7)

We will also need the formula

Lr f
p = p(fp�1Lr f + hPrrf;rfp�1i); (3.8)

for any positive integerp.
The most striking property ofLr is that whenMn is compact (forc > 0 assume

further thatx(Mn) is contained in an open hemisphere) andSr+1 > 0, the operator
Lr is elliptic [14] (see also [3]).

4. Proofs of the Integral Formulas forLr

Here we will prove Theorem 1. First, we need to computeLr

�hX;Xi=2
�q,

Lr hX;Nip andLr �
q
c . Since

r
�hX;Xi

2

�
= �c

nX
i=1

hei;Xi ei;

we get

r
�hX;Xi

2

�q
= q

�hX;Xi
2

�q�1

�c

nX
i=1

hei;Xi ei

= q

�hX;Xi
2

�q�1

�cX
T : (4.1)
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Hence, by (3.8) and Lemma 1,

Lr

�hX;Xi
2

�q
= q

"�hX;Xi
2

�q�1

Lr

� hX;Xi
2

�

+

*
Prr

�hX;Xi
2

�
;r
� hX;Xi

2

�q�1
+#

= q

�� hX;Xi
2

�q�1�
�c[(n� r)Sr�c + (r + 1)Sr+1 hX;Ni]

� c
(n� r)

n
SrjXT j2

�

+ (q � 1)
�hX;Xi

2

�q�2

�2
c

D
PrX

T ;XT
E �

= q

�� hX;Xi
2

�q�1 �
�c[(n� r)Sr�c + (r + 1)Sr+1 hX;Ni]

� c(n� r)Sr
jXT j2
n

�

+ (q � 1)
�hX;Xi

2

�q�2

�2
c

jXT j2
n

(n� r)Sr

�
; (4.2)

sinceD
PrX

T ;XT
E
=
X
k

hek;Xi2 hPrek; eki

=
jXT j2
n

(n� r)Sr; (4.3)

if we choosee1; : : : ; en such that, at a point,

hej ;Xi = hek;Xi ; 8 j; k:
Now we computeLr(hX;Ni)p. We have

r(hX;Ni)p = p(hX;Ni)p�1rhX;Ni
= �p(hX;Ni)p�1

X
jk

hjk hek;Xi ej ; (4.4)

since

rhX;Ni =
X
j

(hrjX;Ni ej + hX;rjNi)ej

= �
X
jk

hjk hek;Xi ej :
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Hence, by (3.8) and Lemma 2,

Lr hX;Nip = p
h
hX;Nip�1 Lr hX;Ni+

D
PrrhX;Ni ;rhX;Nip�1

Ei

= p

�
hX;Nip�1 (�(r + 1)Sr+1�c

� (S1Sr+1 � (r + 2)Sr+2) hX;Ni � h(rSr+1)
T ;Xi)

+ (p� 1) hX;Nip�2 jXT j2
n

(S1Sr+1 � (r + 2)Sr+2)

�
: (4.5)

We used

hPrrhX;Ni ;rhX;Nip�1i
= (p� 1) hX;Nip�2

X
ijk

hjkhik hek;Xi hek;Xi hPrej ; eii

= (p� 1) hX;Nip�2 jXT j2
n

X
ij

h2
ij(Pr)ij

= (p� 1) hX;Nip�2 jXT j2
n

trace(B2Pr)

= (p� 1) hX;Nip�2 jXT j2
n

(S1Sr+1 � (r + 2)Sr+2);

under the hypothesis that, at a point,hek;Xi = hej ;Xi, 8 j; k.
To computeLr�c we use that

r�c = �cXT : (4.6)

Hence (3.8) and Lemma 1 give that

Lr�
q
c = q(�q�1

c Lr�c + hPrr�c;r�q�1
c i)

= q(�q�1
c [�c((n� r)Sr�c + (r + 1)Sr+1 hX;Ni)]

+ (q � 1)�q�2
c hPrr�c;r�ci)

= q(�q�1
c [�c((n� r)Sr�c + (r + 1)Sr+1 hX;Ni)]

+ (q � 1)�q�2
c c2hPrX

T ;XT i)
= q(�q�1

c [�c((n� r)Sr�c + (r + 1)Sr+1 hX;Ni)]

+ c2(q � 1)�q�2
c

jXT j2
n

(n� r)Sr): (4.7)

Now we prove Theorem 1.
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Proof of (a). Choosef = hX;Nip andg =
�hX;Xi=2

�q in (3.7) to obtainZ
Mn

hX;Nip Lr

�hX;Xi
2

�q
+

�
PrrhX;Nip ;r

�hX;Xi
2

�q�
= 0: (4.8)

By (4.1) and (4.4)�
PrrhX;Nip ;r

� hX;Xi
2

�q�

=

*
Pr

�
� p hX;Nip�1

X
jk

hjk hek;Xi ej
�
; q

�hX;Xi
2

�q�1

�cX
T

+

= �pq hX;Nip�1
�hX;Xi

2

�q�1

�c
X
jk

hjk hek;Xi hPrej ;X
T i

= �pq hX;Nip�1
�hX;Xi

2

�q�1

�c
jXT j2
n

X
jk

hjk(Pr)jk

= �pq hX;Nip�1
�hX;Xi

2

�q�1

�c
jXT j2
n

(r + 1)Sr+1; (4.9)

if we choosee1; : : : ; en such that, at a point,hek;Xi = hej ;Xi, 8 j; k.
Now we use (4.2) and (4.9) in (4.8) to finish the proof of (a). 2

Proof of (b). Forc 6= 0 choosef = hX;Nip andg = �qc in (3.7). ThenZ
Mn

hX;Nip Lr�
q
c + hPrrhX;Nip ;r�qci = 0: (4.10)

By (4.4) and (4.6) we have

hPrrhX;Nip ;r�qci = cpq �q�1
c hX;Nip�1

X
jk

hjk hek;Xi hPrej ;X
T i

= cpq �q�1
c hX;Nip�1 jXT j2

n

X
jk

hjk hPrijk

= cpq �q�1
c hX;Nip�1 jXT j2

n
(r + 1)Sr+1: (4.11)

Now use (4.7) and (4.11) in (4.10) to conclude the proof of (b) forc 6= 0. Forc = 0,
(b) comes from (a) withq = 1. 2

Proof of (c). Now we choosef =
�hX;Xi=2

�p andg = hX;Niq in (3.7) to
obtainZ

Mn

�hX;Xi
2

�p
Lr hX;Niq +

�
Prr

�hX;Xi
2

�p
;rhX;Niq

�
= 0: (4.12)
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However, by (4.1) and (4.4) we have�
Prr

�hX;Xi
2

�p
;rhX;Niq

�

= �pq
�hX;Xi

2

�p�1

hX;Niq�1 �c
jXT j2
n

X
jk

hjk(Pr)jk

= �pq
�hX;Xi

2

�p�1

hX;Niq�1 �c
jXT j2
n

(r + 1)Sr+1: (4.13)

Therefore, (4.5) and (4.13) applied to (4.12) finish the proof of (c). We have
thereby finished the proof of Theorem 1. 2

COROLLARY. Under the hypotheses of Theorem 1, if1� p � n, then

Z
Mn

�
hX;Nip

��hX;Xi
2

�p�1

�
�
�c((n� r)Sr�c + (r + 1)Sr+1 hX;Ni)� c

n
(n� r)SrjXT j2

��

�
�hX;Xi

2

�p
+

�
� hX;Nip�1

�
(r + 1)Sr+1�c

� (S1Sr+1 � (r + 2)Sr+2) hX;Ni � h(rSr+1)
T ;Xi

��

+

�
hX;Nip

�hX;Xi
2

�p�2

�2
c(n� r)Sr

� hX;Nip�2
� hX;Xi

2

�p

(S1Sr+1 � (r + 2)Sr+2)

��
dM = 0:

Proof. Subtract (c) from (a) in Theorem 1 with 1� p = q � n. 2

We observe that we could obtain the Corollary just using the self-adjointness ofLr

given in (3.6) and the expressions ofLr hX;Nip andLr hX;X=2iq given in (4.5)
and (4.2), respectively.

5. Applications

Here we prove Theorem 2 and other facts as applications of integral formulas.
We will use the fact that ifMn is compact andHr+1 > 0 then

Hr � H
r=r+1
r+1 ; 1� r � n� 1 (5.1)

with equality at umbilical points [16, lemma 1].
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In the proof of Theorem 2 we will use thatW 6= ; if and only if there exists a
pointp0 2 Qn+1

c such thathX;Ni never vanishes. Thus, ifHr+1 > 0, alsoHr > 0
by (5.1) and, withp = 0, q = 1 andr = 0 in Theorem 1(b) we must have

hX;Ni < 0 (5.2)

for c � 0 since in this case�c � 1. Forc > 0, (5.2) also holds if we choose�p0

instead ofp0, if necessary, because ifp0 2W also�p0 2W and the corresponding
support functions have opposite signs.

Proof of Theorem 2. We may assume thatHr+1 > 0 by a proper choice of the
normal vectorN . By using (3.1) and the self-adjointness ofLr, Lemma 2 gives
that Z

M

�
� (r + 2)

�
n

r + 2

�
Hr+2 + n

�
n

r + 1

�
H1Hr+1

�
hX;Ni dM

= �(r + 1)
�

n

r + 1

�
Hr+1

Z
M
�c dM: (5.3)

On the other hand, by using (5.1) and (5.2) in Theorem 1(b) withp = 0 and
q = 1, we obtain

H
r=r+1
r+1

Z
M
�cdM �

Z
M
Hr�cdM = �Hr+1

Z
M
hX;Ni dM:

Substituting this in (5.3) we obtainZ
M

�
� (r + 2)

�
n

r + 2

�
Hr+2 + n

�
n

r + 1

�
H1Hr+1

�
hX;Ni dM

� (r + 1)
�

n

r + 1

�
H

(r+2)=r+1)
r+1

Z
M
hX;Ni dM: (5.4)

Now we observe that if we denote

c(r) = (n� r)

�
n

r

�
;

then

(r + 2)
�

n

r + 2

�
= c(r + 1);

n

�
n

r + 1

�
=

n

r + 1
c(r)

and

(r + 1)
�

n

r + 1

�
= c(r):
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Multiplying (5.4) by(r + 1) and using these equalities we getZ
M

�
� (r + 1)c(r + 1)Hr+2 + n c(r)H1Hr+1 � (r+ 1)c(r)H(r+2)=(r+1)

r+1

�
hX;Ni dM � 0:

SincehX;Ni < 0 and this integrand is greater or equal to zero, with equality at
umbilic points [1, p. 392], the theorem is proved. 2

THEOREM 3. LetMn be a compact oriented Riemannian manifold and let
x:Mn ! Qn+1

c be an isometric immersion with constant(r + 1)-mean curva-
ture. If c > 0, suppose further thatx(Mn) is contained in an open hemisphere.
Then,W is non-empty if and only ifx is r-stable.

Herer-stable means the following:Mn is a critical point of the functional

Jr =

Z
Mn

Fr(S1; : : : ; Sr)dM + �V

for all variations and the second derivative ofJr atMn,

J 00r (f) = �(r + 1)
Z
Mn

ffLrf + (S1Sr+1 � (r + 2)Sr+2)f + c(n� r)SrfgdM;

is non-negative for every normal variationX: I �Mn ! Qn+1
c of Mn defined by

fN satisfying
R
Mn f dM = 0. HereFr is defined inductively:

F0 = 1

F1 = S1

Fr = Sr +
c(n� r + 1)

r � 1
Fr�2 for 2� r � n� 1;

� is constant and

V (t) =

Z
[0;t]�Mn

X� dQ;

with dQ = volume element ofQn+1
c . Forr = 0, this is the stability defined in [4].

Proof of Theorem 3. By the theorem in [3] ifc 6= 0 or by theorem 2.1 in [1] if
c = 0, x is r-stable if and only ifx(Mn) is a geodesic sphere. And by Theorem 2
abovex(Mn) is a geodesic sphere if and only ifW is non-empty, proving the
theorem. 2

Trivially, a geodesic sphere of centerp0 in Qn+1
c satisfies

Hr�c +Hr+1 hX;Ni � 0; 0� r � n� 1;
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whereX is the position vector relative top0, sinceHr =
�
�c=Sc

�r, if we choose
N = �X=Sc.

The next theorem establishes the converse. A proof of the Euclidean version is
given in [8].

THEOREM 4.Let x:Mn ! Qn+1
c be an isometric immersion of a connected,

compact and oriented Riemannian manifoldMn andp0 2 Qn+1
c relative to which

Hr�c +Hr+1 hX;Ni
does not change sign for some0 � r � n � 1. If c > 0 assume thatx(Mn) is
contained in an open hemisphere ofQn+1

c centered atp0. Thenx(Mn) is a geodesic
sphere.

Proof. From the particular case of Theorem 1 given in (1.3), we obtain, for any
c,

Hr�c +Hr+1 hX;Ni � 0: (5.5)

We first prove thatHr+1 > 0. Clearly, forc � 0 we always have that

�c > 0: (5.6)

If c > 0, (5.6) also holds by the hypothesis onp0.
From the convexity of the ambient space and the compacity ofMn we may

chooseN to have an open setU where all eigenvalues of the second fundamental
form of x are positive. Hence,Hr+1 > 0 onU and we assume that it is the largest
subset ofMn with such a property. We will show thatU =Mn.

By (5.5) and (5.6),

hX;Ni < 0 on U;

since, by (5.1), alsoHr > 0 onU .
On the other hand, by applying (5.1) to (5.5) we get, onU

0 = Hr�c +Hr+1 hX;Ni
� H

r=r+1
r+1 �c +Hr+1 hX;Ni

= H
r=r+1
r+1

�
�c +H

1=r+1
r+1 hX;Ni

�
:

Hence

�c +H
1=r+1
r+1 hX;Ni � 0 on U:

By continuity, also

�c +H
1=r+1
r+1 hX;Ni � 0
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on the closureU of U in Mn. Since by (5.6)�c is positive, alsoHr+1 must be
positive onU . This proves thatU = U and sinceMn is connected we then have
U =Mn. Therefore,Hr+1 > 0 onMn.

Now, use (3.1) and (5.5) in Lemma 1 to obtain

Lr�c � 0 onMn; if c 6= 0

and

LrjXj2 � 0 onMn; if c = 0:

BecauseHr+1 > 0 onMn, we have thatLr is elliptic. Therefore,

�c = const. onMn; if c 6= 0

and

jXj2 = const. onMn, if c = 0:

It follows then that in any casex(Mn) is a geodesic hypersphere inQn+1
c .
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