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Abstract. For a normal variation of a hypersurfadé™ in a space fornQ”** by a normal vector
field fN, R. Reilly proved:

d
dt
whereL, (0 < r < n — 1) is the linearized operator of the + 1)-mean curvatures, 1 of M™
given by L, = div(P,V); that is,L, = the divergence of theth Newton transformatio®, of the

second fundamental form applied to the gradienand Lo, = A the Laplacian of\/™.
From the Dirichlet integral formula fok,,

Sei1(t),_y = Lrf + (S18r41— (r +2)Sr42)f + c(n —1)S, f,

/ (fLrg+(P-Vf,Vg)) =0,
new integral formulas are obtained by making different choiceg ahd g, generalizing known

formulas for the Laplacian. The method gives a systematic process for proofs and a unified treatment
for some Minkowski type formulas, Vi, .
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1. Introduction

Letz: M™ — Rt be an isometric immersion of a compact oriented Riemannian
manifold M™ into the Euclidean spad&*! with inner product , ) and volume
elemeni M. The Dirichlet integral formula for the Laplaciak of M™,

| (FAg+(9£.Vg)aM =0,

gives rise to useful integral formulas for conveniently chosen functfcsrsdg on
M™. For example, iff = 1 andg = (z, z) /2 we obtain the Minkowski formula

/ (L4 H({z, N))dM =0,

* Authors’ research is partially supported by CNPq, Brazil.
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whereN a unit normal vector field odd™ andH; is the normalized mean curvature
of z given by H; = (1/n)S1 with

n

S1=) N

i=1
and \q,..., A\, the eigenvalues of the second fundamental fdsnof xz. Here
Ai = (Ve,ei, N),1 <1 <mn,whereey,...,e, are the corresponding eigenvectors

andV is the covariant derivative of the ambient space (see Section 2).

If z: M™ — Q"+ is an isometric immersion into a simply connected space
form Q7*1, that is,R"+1, S"*1 andH*+! with curvaturec = 0, ¢ > 0 andc < 0,
respectively, letX; be a normal variation of and Si(¢) the mean curvature of
X (M™). Itis known that

d
T S1t)|,eo = Af + |BI* f +en f,

where f = (0X;/0t|,_y, N). This shows that the Laplacian is the linearized
operator ofS; arising from normal variations af. For ther-mean curvature af
given by

S,«: Z >‘i1"‘)‘ir? 1§’)“§n,
1< <ldp

Reilly [20] proved that

d
it Sr+1(t)|t:0 =L, f+ (SlSH-l - (7' + 2)5r+2)f + c(n - T)Srfa

where L, is the linearized operator &, 1 arising from normal variations of
given by

L,f =div(P.V)

andSy = 1. HereV f and div are, respectively, the gradientfadind the divergence
operator onM™ and P, is the rth Newton transformation, a polynomial in the
second fundamental for of = defined inductively by

Py = I,
P, = S, I — BP,_;.

It follows that B and P, have the same eigenvectors and each eigenvali isf
the partial derivative of, 1 with respect to the corresponding eigenvalug3of
(see Section 3). The Dirichlet integral formula fbr is then

| (¢ Lug + (P9 £.Vg)dM =0, (1.1)
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wheref andg are functions od/™.

Denote by grad the gradient of the distance functiett) = d(-, po) in Q" +1,
wherepy € Q"+ is a fixed point. Note that is differentiable, except aty and
—pp for ¢ > 0. Define the position vector of M™ in Q7+, with respect tgo, by

X = S.(s)grads,

with S.(s) = s, sin(sy/c)/+/c or sini(sy/—c)/+/—c, according ta: = 0,c¢ > 0 or
¢ < 0[2]. Note that forc = 0, we haveX = z. Denoted.(s) = (d/ds)S.(s) and
XT = the component ok tangent ta\/™.

We will prove the following

THEOREM 1.Let z: M" — Q"*! be an isometric immersion of a compact
oriented Riemannian manifoltf™ and0 < p < n, 1 < ¢ < n integers. Then, for
anye,

@ [ ({5 o= 15,0+ -+ DSl

TR s+ B (BN T g e s, )

n

q—1
~Pyx Nyt (@) 0| XT % (r + 1)S,+1) dM = 0;
n

® [ (N {ortin = ns0.+ (r+ DS (.

- S DX - 1S, |

= gt x, Ny X TR+ 1)sr+1> dM = 0;

© [ ((52) {xm e+ 080 - (5180

— (1 +2)8:42) (X, N) = ((VSr41)", X))

+ (g ; Y (X, N2 | X" (81841 — (r + 2)5r+2)}
-1
2 <@>’) (X, YL 0,1 X7 (r + 1)Sr+1> dM = 0.

These formulas are obtained choosing ffrst (X, N)? andg = ((X, X)/2)?%in
(1.1), for (a); then, we choose= (X, N)” andg = 67 in (1.1) to obtain (b) for
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c # 0, and ifc = 0, (b) comes from (a) witly = 1; finally, takef = ((X, X)/2)?
andg = (X, N)?in (1.1) to prove (c).

The formulas in (a) and (b) generalize Minkowski formulas. In fact, 4 O,
p=0andg = 1in (a) we obtain

|+ Hopa (X, V)M =0, (12)

proved by Hsiung in [11], wheré&, is the normalized-mean curvature given by

H.=S,/ <Z> Forp = 0 andq = 1, (b) gives, for any:,

[ (. + Hya (X, N))aM =0, (1.3)

which yields a Minkowski formula irs™*+1 and H"+1 first proved by Bivens [5]
(see also [7, 10, 14]). By taking= 0 andg = 1 in (a) we obtain a formula proved
by Shahin [21] and Gardner [9, eq. (2.7)], which has been proved fer2 by
Chern in [6]. Fore = 0, similar formulas to (a) were proved in [22].

Thus, Theorem 1 generalizes all these formulas offering a systematic process for
the proofs. In fact, our method gives a unified treatment for some Minkowski type
formulas via thgr + 1)-mean curvature linearized operator of a hypersurface
in a space form.

As an application of (b) witlhh = 0 andg = 1 we will prove the following

THEOREM 2.Let M™ be a compact oriented Riemannian manifold and/™ —
Q’g“ an isometric immersion with constafit + 1)-mean curvatured, 1, 0 <

r < n — 1 If ¢ > 0assume that(M") is contained in an open hemisphere of
Q"*1. Then, the set of points

W = Q?“ - U (Q?)p

peEM

which are omitted by the totally geodesic hypersurfgcgd), tangent toz(M™)
is non-empty if and only if(M™) is a geodesic sphere.

Forr = 0, this fact was proved by Alencar and Frensel in [2]. The condition that
W is non-empty in Theorem 2 is equivalenttstability of compact hypersurfaces
with H,., 1 constant inQ”+1; for the definitions of-stability, see Section 5. There
are several papers containing some generalization of Minkowski type formulas, for
example [12, 13, 18, 22]. We would like to thank Udo Simon for bringing to our
attention the work by Kohlman [14] and Simon [22].

2. Preliminaries

Let Q"+ be a simply connected space form of constant curvatuferc = 0, it
is the Euclidean spa@+1. We assume that far> 0, Q" is the(n + 1)-sphere
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with radius ¥+/c in R**2 and forc < 0, Q" is the hyperbolic modeir+1(c)
in R*2,

Letz: M — Q7" be an isometric immersion of am-dimensional oriented
Riemannian manifold/™. Let X be the position vector oM™ with origin at
po € Q" T, defined in the Introduction. By analogy with the Euclidean case, for a
unit normal vector fieldV we call (X, N') the support function of the immersion
from the pointpo.

To fix notation, we let be the covariant derivative iQ”*+* and B the second
fundamental form af whose matrix with respectto an orthonormal bagjs. . , e,
is given by

hi]' = <V6ie]'v N> .

Fix a pointpy € Q"*! and consider the distance functieft) = d(po,-) in

Q" (Q"*t — {po, —po} for c > 0). Letey, ..., e, be an orthonormal local basis
onM™. Then
0.
Ve, grads = 5 (e; — (grads, e;) grads). (2.2)

In fact, if we decompose; = (grads, e;) grads + v;, wherew; is in the plane
spanned by; and grad, then

0
Ve, grads = (grads, e;) Vgrads grads + V,,, grads = A v;.

In the last equality we used that is tangent to a geodesic circle of radiu
Q™! whose geodesic curvaturefls/ S...
From (2.1) we get

Ve, X = 0.[grads (grads, e;) + e; — (grads, e;) grads] = 0.e;. (2.2)
Hence

veiver = 00h2]N+ Z (Veiejaek:> €k — C<X7 e’i>6ja
k

where(h;;) is the matrix of B with respect te;. For a geodesic frame,, ... , e,
at a point ofR”*+?* this becomes
Veivej X = Qchi]'N — C (X, €i> ej. (23)
For the unit normal vector field and geodesic frame,, .. ., e, we have

VeiVej N = Vei (—Zh]‘kek>
k

= — Z(veihjk)ek — hizj N.
k
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Therefore, by (2.2) and the Codazzi equations we get

Ve Ve, (X,N) = —0chij — > (Ve hig) (X, ex) — b (X, N) . (2.4)
k

3. The Operator L,

Let z: M — Q"1 be an isometric immersion of a Riemannian manifdid
with second fundamental form® and eigenvalues,, ..., \,. The elementary
symmetric functionsS, associated t@ are defined by

Se=Y Ao A,
1< <y
and ther-mean curvature

H, = (1/ (:})) S,. (3.1)

SetSo = Hp = 1 andS, = H, = 0if r ¢ {0,1,...,n}. Therth Newton
transformation?, is defined, inductively, by

Py =1,
P. =65 1—-BPF_1.

Since P, is a polynomial inB, we have thatBP., = P.B and B and P,
are simultaneously diagonalizable i, ..., \, are eigenvalues aB, then the
eigenvalues ofP, are the partial derivatives &,.1 = Sy11(A1,...,A,) with
respectto\y, ..., \,, denoted by5, (B1), ..., S, (B,); that s,

Sy (B]) =5 (>\17 SRR >‘j717 >‘j+17 ) >\n) )
the r-elementary symmetric function associated to the restriciipiof B to the

subspace orthogonal to the corresponding eigenvegtdissociated ta’. we have
a second order differential operatby defined by

L, f = trace(P, Hess(f)), (3.2)
where Hesgf) is the Hessian matrix of the functigh A" — R. It follows that
Ly f =div(P, V f),
whereV f is the gradient of and div is the the divergence operatorait [17].

LEMMA 1. Letz: M™ — Q"1 be an isometric immersion of andimensional
oriented Riemannian manifoltf ™ into a space forr‘r@?*l. Then,

(a) L.0. = _C[(n - T)Sroc + (T + 1) <X7 N) Sr+l]a if c 7é 0;
1

(0) 5 LelXP2 = 0.[(n = )80 + (r + DSy1 (X, W] = = [XT2(n — 7)S,,

for anyc.
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Proof. A direct computation with a geodesic frarg. . ., e, gives that
Ve; Ve, 0 = —c(0:0i5 + hij (X, N)).
Hence
Lo = —e| S8 = -+ (<17 Hip) (0 + hiy (X, )
ij
= —clf. traceP, + (X, N) trace(B P,)]
= —c[fc(n —7)S; + (r + 1) (X, N) Sp44]-
In the last equality we have used that
traceP, = (n —1)S; (3.3)
and
(r +1)S,41 =trace(B FP,), (3.4)

which are proved in [3, lemma 2.1]. This proves (a).
To prove (b) we will use (2.2) and (2.3) to obtain

Ve Ve, (X, X) = 2V, (V. X, X)
= 2(Ve, Ve, X, X) + 2(Ve, X, Ve, X)
= 20.hij(X, N) + 2026;; — 2c(X, e;) (X, ;).
Hence, by (3.2) we get

1

1
> Lr|X|2 =5 trace(PrVeivej|X|2)

2
trace(h;; P, (X, N))f. + trace(P,)6?
—ctrace((X, e;) (X, e;) P)

= (n—1)S02+ (r + 1)Sp1 (X, N) 6, — % 1XT |12 (n —1)S,,

by (3.3) and (3.4), if we chooss, . .., e, such that, at a poin{,X, e;) = (X, e;),
Y, j. This finishes the proof of Lemma 1. O

LEMMA 2. Letz: M™ — Q7! be an isometric immersion of an oriented Rie-
mannian manifold/™ into a space forn@)”+*. Then

L, (Xa N> = _(r + 1)Sr+190
— (81811 — (r +2)S,12) (X, N) = ((VS,41)T, X).
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Proof. By (3.2) and (2.4) we have
L, (X,N) = trace(P, Hess(X, N))

= —0, trace(P, (h;;)) — trace <P, <Z Ve, hij (X, ek>>>

k
— trace(P, (hZ;) (X, N)).
By using (3.3), (3.4) and the fact that
trace(P, B%) = $1S,4+1 — (r + 2)S,42
[3, lemma 2.1] one obtains
L, (X,N) = —0.(r +1)Sry1— (518011 — (r +2)Sr42) (X, N)
— > trace(Ve, hijP) (X, ex) .

We claim that

trace (Z(vekhijpr) (X, ek>> = ((VS,11)T, X).

k

In fact, by lemma A, (a) in [19] we have

’r’vek Sr+1 = Zhij(vek(Pr)ij)
= ZAj(VekSr(Bj))
= > Ve, (A5 ZV@M Bj)),

J

where)\; andS, (B;) are the eigenvalues & and P, respectively.
On the other hand, by (3.4),

Ve, trace(BP,) = (r + 1)V, Sr+1
Hence,

rVe, Sri1 = Zvek XS, ( Zvekx B)))
= V., trace(BP;) vafk)‘ B;))

= (r+ 1)V, Sr41— traceV, hi;((P)ij)-
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This yields
Ve, Sri1 = traceVe, hi;((Pr)ij)
and so,

((VSr0)7, X ) = trace " Ve hii (Pr)ig) (X, en),
k

proving the claim. By substituting this in the last expressiofof X, N') above,
we finish the proof of the lemma. O

For any differentiable functiong andg on M™, the operator., satisfies

Ly fg=fLrg+gL,f+2(PVf,Vg) (3.5)
and, if M™ is compact,

| (Legyant = [ (gL, pan, (36)

MTL MTL

(see [17]). Hence,

| (¢ Leg+ (RVS.Vg)am =0, (37)
We will also need the formula

Le fP =p(fP 1 Lp f+ (P VL,V P7Y), (3.8)

for any positive integep.

The most striking property df, is that whenV/” is compact (for > 0 assume
further thatz (M ™) is contained in an open hemisphere) &g; > 0, the operator
L, is elliptic [14] (see also [3]).

4. Proofs of the Integral Formulas for L,

Here we will prove Theorem 1. First, we need to compiite((X, X)/2)",
L. (X,N)? andL, 9. Since

v <<X’X>> :ecfj<ei,X> i

T2 )l
we get
V<<X,2X>>q _ q<<X,2X>>‘1‘l 0.3 (e X)e,

_y <<X’X>>“ 6.X7. 4.1)
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Hence, by (3.8) and Lemma 1,

I ((X,ZX)>Q ., ((X,2X>>q1Lr ((X,ZX)>

(e (B50). v (250)7)]
_ q[ <<X’ X>)ql {90[(71 — )8, + (1 + 1)Sy41 (X, N)]

_lnmr) s,|XT|2}
n

+(g—1) <@>q_2 02 (PXT, XT”

= o[ ()" {odn - 1510+ (4 1800 3,

T2
—c(n—r)S,u|X | }
n

_2 2
sy (DT e ns] @)

since
<PTXT’XT> = Z <€k’X>2 (Prek’ ek:>
k
XT 2
= u (n—r)Sy, 4.3)

n
if we choosezy, . . ., e, such that, at a point,

(ej, X) = (ex, X), Vj,k.
Now we computd_,({(X, N))P. We have
VX, N))? = p((X, N))P 1V (X, N)
= —p((X, N))P~* Zhjk (e, X) €, (4.4)
since .
V(X,N) = Z((ij, N)ej+(X,V;N))ej
J

= =Y hjk (e, X) €.
i
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Hence, by (3.8) and Lemma 2,
Lo (X, N)" = p[(X,N)""* L, (X, N) + (P, V (X, N),V (X, N)" 1)

_ p[<X, NYP~L(—(r + 1)S, 116,

— (818741 — (1 +2)8p42) (X, N) = {(VS;41) T, X))
XT|2

Fp-xnp 2 XD

(S]_S,ur]_ — (T + Z)S,urz) .

(4.5)

We used
(P,V (X,N),V (X, NP1

= (p — 1) <X, N>p_22hjkhik <€k,X> <€k,X> <P,«€]', €Z'>
ijk

— (p— 1) (X, N}~ 2'X Esnzm
ij
— (p— 1) (x, N2 X

n
X717
n

under the hypothesis that, at a poifa,, X) = (e;, X), ¥ j, k.
To computelL,.6. we use that

Vo, = —cXT. (4.6)

trace(B2P,)

= (p - 1) (Xv N>p72 (S].ST+1 - (T + Z)Sr+2)a

Hence (3.8) and Lemma 1 give that
L,6¢ = q(03 L0, + (P, V0., VOiY)
= (07 —c((n —r)Sr0c + (r + 1)S,11 (X, N))]
+(q —1)02 2(P.V6., V0,)
= (07 —c((n —r)Sr0c + (r + 1)S,11 (X, N))]
+ (g = DO 2 AP XT, XT))
= q(0 [=c((n = )Srfc + (r + 1)Sp41 (X, N))]

T|2

+ c?(q — 1)09 2l X717 — (n=1)S,). 4.7)

Now we prove Theorem 1.
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Proof of (@) Choosef = (X, N)? andg = ({X, X)/2)?in (3.7) to obtain

/ (XN L, <<X’2X>>q + <PTV(X, NY .V (<X’2X>>q> ~0. (4.8)

By (4.1) and (4.4)
<p,v (X, NV, V (@)‘v

s o (50 o)

ik

q—1
= —pg (6N (D) 0 5 b e, X0 (e, XT)
2 I
-1 (X, X) IXTI2
= —pq <Xa N>p (T) Zh]k
X. X -1 XT 2
= —pg Ny (B0 L s, @9)
if we chooseey, . . ., e, such that, at a poinfex, X) = (e;, X), ¥ j, k.
Now we use (4.2) and (4.9) in (4.8) to finish the proof of (a). O

Proof of (b) Forc # 0 choosef = (X, N)? andg = 07 in (3.7). Then
/ (X, N)? L,60 + (P,V (X, N)”,V69) = 0. (4.10)
By (4.4) and (4.6) we have

(P,V (X, N),V01) = cpg 0™ (X, NV hyp (e, X) (Prej, XT)
ik

XTZ
— epqor Nyt L |

Z hyk

= cpqf? (X, N)P~ 1] n' (r+1)S41.  (4.11)

Now use (4.7) and (4.11) in (4.10) to conclude the proof of (b} fgr0. Forc = 0,
(b) comes from (a) witly = 1. O

Proof of (c) Now we choosef = ((X, X)/2)? andg = (X, N)? in (3.7) to
obtain

/ ) <@>ﬁ L, (X,N) + <Prv <<X,2X)>”7V<X7N>q> ~0. (4.12)
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However, by (4.1) and (4.4) we have

<PrV <<X’2X>>p,V(X,N>q>

p—1 2
z—pQ<<X’2X>> (X, M) 0, |X | Zhjk

-1 T 2
- <@>p (X, Ny, n' (r +1)Sy41. (4.13)

Therefore, (4.5) and (4.13) applied to (4.12) finish the proof of (c). We have
thereby finished the proof of Theorem 1. O

COROLLARY. Under the hypotheses of Theorem 1., i p < n, then

[ (omr {(52)"

« [ec((n Syt (4 DSpa (X, V)~ & (n - r)S,n|XT|2] }

_ (@)p + { (X, Ny [(r +1)8,410,

~ (S18p41.— (r +2)8,12) (X, N) = (V120" X)) |

+ [(X, N)? <@>ﬁ29§(n —r)S,

2
- <X7 N>p_2 <<X’2X> >p (S].ST+1 - (T + 2)57“+2)

)dM =0.
Proof. Subtract (c) from (a) in Theorem 1 withd p = g < n. O

We observe that we could obtain the Corollary just using the self-adjointnéss of
given in (3.6) and the expressionsiof (X, N)? andL, (X, X /2)? given in (4.5)
and (4.2), respectively.

5. Applications

Here we prove Theorem 2 and other facts as applications of integral formulas.
We will use the fact that if/” is compact andd, ., > 0 then

H >H/  1<r<n-1 (5.1)

with equality at umbilical points [16, lemma 1].
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In the proof of Theorem 2 we will use th&@t # () if and only if there exists a
pointpg € Q"1 suchthat X, N) never vanishes. Thus,if,,; > 0, alsoH,. > 0
by (5.1) and, witlp = 0, ¢ = 1 andr = 0 in Theorem 1(b) we must have

(X,N) <0 (5.2)

for ¢ < 0 since in this casé@. > 1. Forc > 0, (5.2) also holds if we choosepg
instead opy, if necessary, becauseji € W also—po € W and the corresponding
support functions have opposite signs.

Proof of Theorem 2We may assume tha&l, ., > 0 by a proper choice of the

normal vectorN. By using (3.1) and the self-adjointnessiof, Lemma 2 gives
that

/M{—(r+2)(Tiz>Hr+2+n<ril>H1Hr+1}(X,N)dM

- (r+1) (T ” 1) Hyos [ 0. (5.3)

On the other hand, by using (5.1) and (5.2) in Theorem 1(b) with O and
g = 1, we obtain

HIH / 0,.dM < / H,0,dM = —H, 1 / (X, N) dM.
M M M

Substituting this in (5.3) we obtain

/M{—(r+2) <T22>Hr+2+n<ril>HlH’"+l} (X,N)dM

> (r+ 1) (T ! 1) gAY /M (X, N) dM. (5.4)

Now we observe that if we denote

)= tn=r) (7).

then

(r+2)<r_7_2> =c(r+1),

()

and

(r+1) (r—?—l) = c(r).
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Multiplying (5.4) by (r + 1) and using these equalities we get
/ { —(r+Ye(r+1)Hy42+ne(r)HiHr g1 — (r + 1)c(r)HT(Tl'2)/(T+1)} (X,N)dM > 0.
M

Since(X, N) < 0 and this integrand is greater or equal to zero, with equality at
umbilic points [1, p. 392], the theorem is proved. O

THEOREM 3. Let M™ be a compact oriented Riemannian manifold and let
. M™ — Q"*! be an isometric immersion with constamt+ 1)-mean curva-
ture. If ¢ > 0, suppose further that(M™) is contained in an open hemisphere.
Then,W is non-empty if and only if: is r-stable.

Herer-stable means the followingZ™ is a critical point of the functional
Jr = F.(S1,...,S.)dM + \V
Mn

for all variations and the second derivativepfat M ™,
TP ==+ [ FEf + (S5r1 = (4 2)Sp42)f + cln — 1S, F}dM,

is non-negative for every normal variatiofit I x M™ — Q"+! of M™ defined by
[N satisfyingf,,. f dM = 0. HereF, is defined inductively:

Fo =1
F = 5

— 1
F, :S,«—i-MF,«_z for 2<r<n-1,

r—1

A is constant and
V(t) = / X* dQ,
[0,t] x M™
with d@Q = volume element of)”+1. Forr = 0, this is the stability defined in [4].

Proof of Theorem 3By the theorem in [3] ift # 0 or by theorem 2.1 in [1] if
¢ = 0, z is r-stable if and only ifz(M™) is a geodesic sphere. And by Theorem 2
abovex(M™) is a geodesic sphere if and onlyTif is non-empty, proving the
theorem. O

Trivially, a geodesic sphere of centgyin Q"+ satisfies

HT00+HT+1<X3N>503 OS’I”STL—].,
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whereX is the position vector relative tay, sinceH, = (OC/SC)’", if we choose
N =—-X/8,.

The next theorem establishes the converse. A proof of the Euclidean version is
givenin [8].

THEOREM 4.Letz: M™ — Q"*1 be an isometric immersion of a connected,
compact and oriented Riemannian manifalf andpo € Q7+ relative to which

H.0.+ H,;1(X,N)

does not change sign for sorfe< r < n — 1. If ¢ > 0 assume that(M") is
contained in an open hemispheregif  centered apo. Thenz(M™) is a geodesic
sphere.

Proof. From the particular case of Theorem 1 given in (1.3), we obtain, for any
C

H. 0.+ H,;1(X,N)=0. (5.5)
We first prove thatd, 1 > 0. Clearly, forc < 0 we always have that
6. > 0. (5.6)

If ¢ > 0, (5.6) also holds by the hypothesisan

From the convexity of the ambient space and the compacity/bfwe may
chooseN to have an open sét where all eigenvalues of the second fundamental
form of = are positive. Hencd{, .1 > 0 onU and we assume that it is the largest
subset ofM/™ with such a property. We will show that = M™.

By (5.5) and (5.6),

(X,N)<0 on U,

since, by (5.1), alsé{f,, > 0 onU.
On the other hand, by applying (5.1) to (5.5) we getlbn

0= H 0.+ H1(X,N)
> H :irl—l—lg +Hr+l (X N>
_ H:irlJrl (0 +Hl/r+1 (X N>)
Hence
1/r+1
O.+H, ;" (X,N)<0 on U.

By continuity, also

6.+ H' ™ (X, N) <0
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on the cIosEraV of U in M™. Since by (5.6p. is positive, alsoH, 1 must be
positive onU. This proves that/ = U and sinceM™ is connected we then have
U= M". ThereforeH, 1 >0onM".

Now, use (3.1) and (5.5) in Lemma 1 to obtain

L.6.=0onM™, ifc#£0

and

L. X|?=00onM", if ¢ =0.

Becausdd, 1 > 0 on M", we have thaf., is elliptic. Therefore,

0. = const.onM™”, if c£0

and

|X|? = const. onM™, if ¢ = 0.

It follows then that in any case(M") is a geodesic hypersphere@i+.
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