On the First Eigenvalue of the Linearized Operator of the r-th Mean Curvature of a Hypersurface

HILARIO ALENCAR, MANFREDO DO CARMO AND HAROLD ROSENBERG

Abstract: We generalize Reilly's inequality for the first eigenvalue of immersed submanifolds of \mathbb{R}^{m+1} and the total (squared) mean curvature, to hypersurfaces of \mathbb{R}^{m+1} and the first eigenvalue of the higher order curvatures. We apply this to stability problems. We also consider hypersurfaces in hyperbolic space.

Key words: Curvatures of hypersurfaces, Reilly's inequality, stability MSC 1991: 53 A 10, 53 C 42

Let M^n be a closed submanifold immersed in \mathbb{R}^{m+1} (i.e., M is compact, connected and $\partial M = \phi$), and let H_1 , λ_1 denote the mean curvature and first eigenvalue of the Laplacian of M, respectively. In [R-1], R. Reilly proved:

$$\frac{\lambda_1}{n} \le \frac{1}{\operatorname{Vol}\left(M\right)} \int\limits_M H_1^2 \tag{0.1}$$

and that equality occurs precisely if M is minimally immersed in a sphere of \mathbb{R}^{m+1} . In particular, if n = m, equality means that M is a sphere.

This result of Reilly can easily be extended to (isometric) immersions in the unit sphere S^{m+1} by applying (0.1) to the immersion of M in \mathbb{R}^{m+2} obtained by $M \to S^{m+1} \subset \mathbb{R}^{m+2}$:

$$\frac{\lambda_1}{n} - 1 \le \frac{1}{V} \int\limits_M H_1^2, \quad V = \operatorname{Vol}(M). \tag{0.2}$$

For immersions of M^m in the hyperbolic space \mathbf{H}^{m+1} , the situation is more subtle. E. Heintze obtained some results [H] (indeed, he considers any Riemannian manifold as an ambient space). The best inequality in \mathbf{H}^{m+1} was finally obtained by A. El Soufi and S. Ilias [S-I]:

$$\frac{\lambda_1}{m} + 1 \le \frac{1}{V} \int\limits_M H_1^2, \quad m \ge 2, \tag{0.3}$$

and equality occurs precisely if M is minimally immersed in a geodesic sphere of radius $\operatorname{arcsh} \sqrt{\frac{m}{\lambda_1}}$.

A. El Soufi and S. Ilias apply this result to study stable immersions of constant mean curvature. In particular, they obtain the theorems of Barbosa, do Carmo (ambient space \mathbf{R}^{m+1}) and Barbosa, do Carmo, Eschenburg (ambient spaces S^{m+1} and \mathbf{H}^{m+1}), [B-dC], [B-dC-E]:

The stable hypersurfaces M^m of constant mean curvature, immersed in a space form \mathbb{R}^{m+1} , S^{m+1} , or \mathbb{H}^{m+1} , are precisely the geodesic hyperspheres.

In this paper we shall continue the study of $\lambda_1(L_r)$, where L_r is the linearized operator of $S_{r+1} = \binom{m}{r+1}H_{r+1}$ arising from normal variations of an immersed hypersurface $M^m \subset N^{m+1}(a)$, $a = 0, \pm 1, N^{m+1}(0) = \mathbb{R}^{m+1}, N^{m+1}(1) = S^{m+1}$ and $N^{m+1}(-1) = \mathbb{H}^{m+1}$. Here S_r is the r-th elementary symmetric function of the eigenvalues k_1, \ldots, k_n of the shape operator A, i.e., $S_0 = 1, S_1 = k_1 + \cdots + k_n, \cdots, S_n = k_1 \ldots k_n$. We refer the reader to [R-2], [A-dC-C], [Ro] for details concerning L_r . For short, $L_r(f) = \operatorname{div}(T_r \nabla f)$, where T_r is the r-th Newton transformation arising from $A; T_0 = I, T_r = S_r I - AT_{r-1}$, (so $L_0 = \Delta$).

In \mathbf{R}^{m+1} we are able to generalize Reilly's result as the best possible one:

$$\lambda_1^{L_r} \int\limits_M H_r \le c(r) \int\limits_M H_{r+1}^2,$$

where M is an immersed hypersurface in \mathbb{R}^{m+1} with $H_{r+1} > 0$, and $c(r) = (m-r)\binom{m}{r}$. Equality holds precisely if M is a sphere.

Using this we generalize the theorems of Barbosa-do Carmo [B-dC] (stability of a constant mean curvature immersion means that M is a sphere) and the theorem of Alencar, do Carmo, and Colares [A-dC-C] (stability of a constant scalar curvature immersion in \mathbf{R}^{m+1} means that M is a sphere). We prove that an immersion of M^n in \mathbf{R}^{m+1} is *r*-stable if and only if M is a sphere. We shall explain *r*-stable subsequently; briefly, it means M is a critical point of the functional $\int_M H_r + b\bar{V}(M)$, and the second derivative of this functional at M is nonnegative. Here b is a suitable constant and $\bar{V}(M)$ is the volume bounded by M.

In \mathbf{H}^{m+1} we obtain an extrinsic upper bound for $\lambda_1^{L_r}$, but it is not the best possible one, even for r = 0. Consequently, our technique does not yield stability results here. We remark that Alencar, do Carmo and Colares [A-dC-C] have classified the stable constant scalar curvature R immersions of M^m into S^{m+1} as the geodesic spheres, provided R > 1, i.e. $H_2 = R - 1 > 0$. For the moment, this is not known to hold in \mathbf{H}^{m+1} .

1. Hypersurfaces in \mathbb{R}^{m+1}

Let $M = M^m$ be an orientable closed manifold, isometrically immersed in \mathbb{R}^{m+1} . We now establish the extrinsic upper bound for λ_1 , where λ_1 is the first eigenvalue of the operator L_r , $r = 0, 1, \ldots, m-1$.

Theorem 1.1. If $H_{r+1} > 0$ on M, then

$$\lambda_1 \int_M H_r \le c(r) \int_M H_{r+1}^2, \quad c(r) = (m-r) \binom{m}{r},$$

and equality holds precisely if M is a sphere of \mathbb{R}^{m+1} .

Proof. First observe that L_r is an elliptic operator: by surrounding M by concentric spheres, it is easy to find one strictly convex point of M; then $H_{r+1} > 0$ implies that

 L_r is elliptic. (The proof is essentially contained in [K]; cf. also [Ro], p. 20.) Thus, to establish Theorem 1.1, we shall use the minimax characterization of λ_1 :

$$\lambda_1 = -\inf\left[\frac{\int_M f L_r(f)}{\int_M f^2}, \int_M f = 0\right].$$
(1.1)

We now proceed with the proof of Theorem 1.1. We may assume that $\int_M X = 0$, where X denotes the position vector of a point of M (just translate M, so that the center of mass is at the origin).

For $1 \le k \le m+1$, let $f = x_k$ be the k-th coordinate function on M; $X = (x_1, \ldots, x_{m+1})$. Then $\int_M f = 0$ and by (1.1) we have

$$\lambda_1 \int_M f^2 \le -\int_M f L_r(f). \tag{1.2}$$

Since $H_{r+1} > 0$ on M, it follows that $H_r > 0$ on M, too ([M-R], Lemma 1). Let n be the unit vector field whose direction is the opposite of the mean curvature vector.

It is known (and not difficult) that

$$L_r(X) = -c(r)H_{r+1}n.$$
 (1.3)

For future reference we state the general formula for $L_r(X)$ in the space form $N^{m+1}(c), c = 0, \pm 1, ([\text{Ro}], \text{Eq. } (5.2)).$

$$L_r(X) = -c(r)(H_{r+1}n + cH_rX).$$
(1.4)

Now we use (1.3) in (1.2) and sum from k = 1 to m + 1 to obtain:

$$\lambda_1 \int_M |X|^2 \le c(r) \int_M H_{r+1} \langle X, n \rangle.$$
(1.5)

In \mathbb{R}^{m+1} , we have the Minkowski formulae ([Hs], p. 286; our orientation is opposite to that in [Hs]):

$$\int_{M} (H_r - H_{r+1}\langle X, n \rangle) = 0.$$
(1.6)

Thus (1.5) becomes:

$$\lambda_1 \int_M |X|^2 \le c(r) \int_M H_r. \tag{1.7}$$

Now multiply both sides of this equality by $\int_M H_{r+1}^2$ and use Cauchy-Schwarz to obtain:

$$c(r)\left(\int_{M} H_{r}\right)\left(\int_{M} H_{r+1}^{2}\right) \geq \lambda_{1}\left(\int_{M} |X|^{2}\right)\left(\int_{M} H_{r+1}^{2}\right)$$
$$\geq \lambda_{1}\left(\int_{M} |X|H_{r+1}\right)^{2} \geq \lambda_{1}\left(\int_{M} \langle X, n \rangle H_{r+1}\right)^{2} = \lambda_{1}\left(\int_{M} H_{r}\right)^{2}$$

Hence, we have proved:

$$\lambda_1 \int_M H_r \le c(r) \int_M H_{r+1}^2. \tag{1.8}$$

If equality holds in (1.8), then the equality in our use of Cauchy-Schwarz yields that

$$\left(\int_{M} |X|H_{r+1}\right)^2 = \left(\int_{M} \langle X, n \rangle H_{r+1}\right)^2.$$

By (1.6) and the fact that $H_r > 0$ on M, we conclude that $\int_M \langle X, n \rangle H_{r+1} > 0$, so

$$\int_{M} |X| H_{r+1} = \int_{M} \langle X, n \rangle H_{r+1}.$$

Thus X = kn for some function k, hence

$$\nabla_{e_i}(|X|^2) = e_i(\langle X, X \rangle) = 2\langle e_i, X \rangle = 2k \langle e_i, n \rangle = 0.$$

This means the equality is equivalent to |X| = constant, i.e. M is a sphere. \Box

Corollary 1.2. In addition to the hypotheses of Theorem 1.1 assume that H_{r+1} is constant. Then

$$\lambda_1 \le c(r) H_{r+1}^{\frac{r+2}{r+1}},$$

and equality holds precisely when M is a sphere.

Proof. We know that $H_r \ge H_{r+1}^{r/r+1}$ and equality means that M is a sphere ([M-R], Lemma 1). Thus, by Theorem 1.1, we have:

$$\lambda_1 \le c(r) H_{r+1}^2 \frac{\int_M 1}{\int_M H_r} \le c(r) \frac{H_{r+1}^2}{H_{r+1}^{r/r+1}} = c(r) H_{r+1}^{\frac{r+2}{r+1}}.$$

Theorem 1.3. Let Ω be a compact m + 1 manifold with $M = \partial \Omega$, and assume Ω to be isometrically immersed in \mathbb{R}^{m+1} so that $H_{r+1} > 0$ on M. Let $\lambda_1 = \lambda_1(L_r)$. Then

$$\lambda_1 \leq rac{c(r)}{(m+1)^2} \cdot rac{V(M)}{V(\Omega)^2} \cdot \int\limits_M H_r,$$

and equality holds precisely when M is a sphere. Here V(M) and $V(\Omega)$ are the volume of M and Ω , respectively.

Proof. Let X (also) denote the pull back of the position vector field to Ω . Then div (X) = m + 1 so that

$$\int_{\Omega} \operatorname{div} X = (m+1)V(\Omega) = \int_{M} \langle X, n \rangle \le \int_{M} |X|.$$
(1.9)

390

Hence,

$$(m+1)^2 V(\Omega)^2 \le \left(\int_M |X|^2\right) V(M), \text{ i.e. } \frac{(m+1)^2 V(\Omega)^2}{V(M)} \le \int_M |X|^2.$$
 (1.10)

Combining this with (1.7) yields Theorem 1.3. Equality in Theorem 1.3 implies:

$$\int_{M} \langle X, n \rangle = \int_{M} |X|,$$

and, as before, this means M is sphere.

2. Stability of Hypersurfaces in \mathbb{R}^{m+1}

R. Reilly has calculated the first and second variation of $\int_M H_{r+1}$, for normal variations of hypersurfaces M in a space form $N^{m+1}(c)$. If the normal variation is given by the function f on M, then

$$\frac{\mathrm{d}}{\mathrm{d}t}\Big|_{t=0}\left(\int_{M} S_{r}\right) = \int_{M} f\{-(r+1)S_{r+1} + c(m-r+1)S_{r-1}\},\tag{2.1}$$

where S_j is the *j*-th symmetric function of M ([R-2], p. 470).

Now let c = 0 and $h(X) = \langle X, n(X) \rangle$ be the support function of $M^m \hookrightarrow \mathbb{R}^{m+1}$. It is well-known that

$$\frac{\mathrm{d}}{\mathrm{d}t}\Big|_{t=0}\left(\int\limits_{M}h\right) = \frac{1}{m+1}\int\limits_{M}f.$$

Thus, for any real number b, we have:

$$\frac{\mathrm{d}}{\mathrm{d}t}\Big(\int\limits_M S_r + bh\Big) = \int\limits_M f\{-(r+1)S_{r+1} + \frac{b}{m+1}\}.$$

Hence, the critical points of the functional $J: M \mapsto \int_{M} (S_r + bh)$ are those manifolds M for which S is the constant $\frac{b}{M}$

M for which S_{r+1} is the constant $\frac{b}{(r+1)(m+1)}$.

A stable critical point is a point where $J''(0) \ge 0$ for all normal variations. One can easily compute the second variation of J by using equation (9) of Reilly [R-2] (cf. §2 of [A-dC-C]):

$$J''(0)(f) = \int_{M} -(r+1)fL_{r}(f) + [(r+1)c(r+1)H_{r+2} - mc(r)H_{1}H_{r+1}]f^{2}.$$
 (2.2)

Now we can state:

Theorem 2.1. Let M^m be a closed hypersurface in \mathbb{R}^{m+1} with H_{r+1} constant. Then M is stable if and only if M is a sphere.

Proof. We apply (2.2) for f being the first eigenfunction of $L_r : L_r(f) + \lambda_1 f = 0$. Assuming that H_{r+1} is constant (hence positive) and M is stable we have:

392

$$\int_{M} [(r+1)\lambda_1 + (r+1)c(r+1)H_{r+2} - mc(r)H_1H_{r+1}]f^2 \ge 0.$$
(2.3)

By Corollary 1.2 we know: $\lambda_1 f^2 \leq c(r) H_{r+1}^{\frac{r+2}{r+1}} f^2$, hence:

$$\int_{M} [(r+1)c(r)H_{r+1}^{\frac{r+2}{r+1}} + (r+1)c(r+1)H_{r+2} - mc(r)H_{1}H_{r+1}]f^{2} \ge 0.$$
(2.4)

We know that $H_r H_{r+2} \leq H_{r+1}^2$, $r = 0, \ldots, m-2$, with equality at umbilical points ([B-M-V], p. 285, Theorem 1 and p. 288, Remark 3. Furthermore, one can consult [H-L-P], p. 104). By induction, we can see that if $H_{r+1} > 0$, this implies:

$$H_1H_{r+1} \ge H_{r+2},$$

with equality at umbilical points.

Thus, since (r+1)c(r+1) = (m-r-1)c(r),

$$\begin{aligned} (r+1)c(r)H_{r+1}^{\frac{r+2}{r+1}} + (r+1)c(r+1)H_{r+2} - mc(r)H_1H_{r+1} \\ &\leq (r+1)c(r)H_{r+1}^{\frac{r+2}{r+1}} + (m-r-1)c(r)H_1H_{r+1} - mc(r)H_1H_{r+1} \\ &= (r+1)c(r)H_{r+1}^{\frac{r+2}{r+1}} - (r+1)c(r)H_1H_{r+1} \\ &= (r+1)c(r)\Big(H_{r+1}^{\frac{r+2}{r+1}} - H_1H_{r+1}\Big). \end{aligned}$$

Since $H_1 \ge H_{r+1}^{\frac{1}{r+1}}$ with equality at umbilical points ([M-R], Lemma 1), we have $H_1H_{r+1} \ge H_{r+1}^{\frac{r+2}{r+1}}$, hence

$$(r+1)c(r)H_{r+1}^{\frac{r+2}{r+1}} + (r+1)c(r+1)H_{r+2} - mc(r)H_1H_{r+1} \le 0.$$

By (2.4) we must have equality everywhere, hence M is a sphere.

3. Hypersurfaces of Hyperbolic Space

Let $M^m \subset H^{m+1}$ be a closed hypersurface and let $X = (\tilde{X}, x) \in \mathbb{R}^{m+2}$, $\tilde{X} \in \mathbb{R}^{m+1}$, $x \in \mathbb{R}^+$, denote a point of H^{m+1} in the Minkowski model. We think of X as the position vector field of M. The metric on \mathbb{H}^{m+1} is that induced by $dx_1^2 + \ldots + dx_{m+1}^2 - dx_{m+2}^2$ and

$$\mathbf{H}^{m+1} = \{ (\tilde{X}, x) / |\tilde{X}|^2 - x^2 = -1 \}.$$

Here $\tilde{X} = (x_1, \ldots, x_{m+1}), x = x_{m+2} > 0$, and $|\tilde{X}|$ is the Euclidean norm on \mathbb{R}^{m+1} . It is clear from the definition of the metric that Euclidean isometries T of \mathbb{R}^{m+1} , induce isometries of \mathbb{H}^{m+1} by $(\tilde{X}, x) \mapsto (T\tilde{X}, x)$. Thus, after an isometry of \mathbb{H}^{m+1} induced by a translation of \mathbb{R}^{m+1} , we can assume the center of gravity of the \tilde{X} coordinate of M to be at 0; i.e., $\int_{M} x_j = 0, 1 \le j \le m+1$. For fixed j, let $f = x_j$.

Let N be the unit normal vector field to M in \mathbf{H}^{m+1} whose direction is the opposite of the mean curvature vector of M (assuming this vector to be nonzero). Then, if $L = L_r$ is the linearization of the r + 1-st symmetric function of curvature of M, we have the vector equation (1.4):

$$L(X) = -c(r)(H_{r+1}N - H_rX), \quad c(r) = (m-r)\binom{m}{r}.$$

This represents m + 2 equations for the coordinate functions of X and N. We have

$$L(f) = -c(r)(H_{r+1}n_j - H_r x_j).$$

Thus

$$-fL(f) = c(r)(H_{r+1}n_jx_j - H_rx_j^2),$$

and summing up from j = 1 to m + 1:

$$-(m+1)fL(f) = c(r)(H_{r+1}\langle \tilde{N}, \tilde{X} \rangle - H_r |\tilde{X}|^2),$$

where \tilde{N} is the projection of N to \mathbb{R}^{m+1} .

Now we proceed as in the Euclidean case to estimate $\lambda_1 = \lambda_1^{L_r}$.

$$\lambda_1 \int\limits_M f^2 \leq - \int\limits_M fL(f)$$

becomes

$$\frac{\lambda_1}{c(r)} \int\limits_M |\tilde{X}|^2 \le \int\limits_M (H_{r+1} \langle \tilde{N}, \tilde{X} \rangle - H_r |\tilde{X}|^2).$$

Now $X \cdot X = -1$ and $X \cdot N = 0$, hence $|\tilde{X}|^2 = x^2 - 1$ and $\langle \tilde{X}, \tilde{N} \rangle = xn$, where $n = -e \cdot N$ and $e = (0, \dots, 0, 1) \in \mathbb{R}^{m+2}$. Since X, N and the tangent space to M at X generate the vector space \mathbb{R}^{n+2} , the gradient ∇x of x (in the metric on M) can be written as

$$\nabla x = e + (e \cdot X)X - (e \cdot N)N = e - xX + nN$$

(cf. [B-dC-E], p. 131). Thus

$$0 \le |\nabla x|^2 = -1 + x^2 - n^2,$$

hence

$$xn \le \frac{x^2 + n^2}{2} \le x^2 - \frac{1}{2} = |\tilde{X}|^2 + \frac{1}{2}.$$

Assume $H_{r+1} > 0$, so that $H_r \ge H_{r+1}^{\frac{r}{r+1}}$, and let $\overline{H} = \sup H$, $\underline{H} = \inf H$. Then

$$-\int H_r |\tilde{X}|^2 \leq -\underline{H}_{r+1}^{\frac{r}{r+1}} \int |\tilde{X}|^2,$$

and

$$\int H_{r+1}\langle \tilde{X}, \tilde{N} \rangle \leq \bar{H}_{r+1} \int |\tilde{X}|^2 + \frac{1}{2} \int H_{r+1}.$$

Thus

$$\frac{\lambda_1}{c(r)} \le \bar{H}_{r+1} + \frac{1}{2} \frac{\int H_{r+1}}{\int |\tilde{X}|^2} - \underline{H}_{r+1}^{\frac{r}{r+1}}.$$

We have

$$\int |\tilde{X}|^2 \int H_{r+1}^2 \ge \int n^2 \int H_{r+1}^2 \ge \left(\int H_{r+1}n\right)^2 = \left(\int H_r x\right)^2 \ge \left(\int H_r\right)^2.$$

Here we have used $|\tilde{X}|^2 = x^2 - 1 \ge n^2$ and $\int H_{r+1}n = \int H_r x$ and since L is a divergence operator so $\int L(X) = 0$ by Stoke's theorem. The last inequality follows from $x \ge 1$. Thus we have proved:

Theorem 3.1. Let M be a closed hypersurface immersed isometrically in \mathbf{H}^{m+1} and suppose $H_{r+1} > 0$ on M. Then

$$\frac{\lambda_1}{c(r)} \le \bar{H}_{r+1} + \frac{1}{2} \frac{\bar{H}_{r+1}^3}{\underline{H}_r^2} - \underline{H}_{r+1}^{\frac{r}{r+1}}.$$

If H_{r+1} is constant (necessarily $H_{r+1} > 1$), this becomes:

$$\frac{\lambda_1}{c(r)} \le H_{r+1} + \frac{1}{2}H_{r+1}^{\frac{r+3}{r+1}} - 1.$$

References

- [A-dC-C] ALENCAR, H.; DO CARMO, M.; COLARES, A.G.: Stable hypersurfaces with constant scalar curvature. To appear: Math. Z. 1993
- [B-dC] BARBOSA, L.; DO CARMO, M.: Stability of hypersurfaces with constant mean curvature. Math. Z. 195 (1984), 339-353.
- [B-dC-E] BARBOSA, L.; DO CARMO, M.; ESCHENBURG, J.: Stability of hypersurfaces of constant mean curvature in Riemannian manifolds, *Math. Z.* 197 (1988), 123-138.
- [B-M-V] BULLEN, P.S.; MITRINOVIC, D.S.; VASIC, P.M. (Eds.): Means and Their Inequalities, Mathematics and its Applications. D. Reidel Publ. Co., Dordrecht, Holland 1988.
- [H-L-P] HARDY, G.H.; LITTLEWOOD, J.E.; PÓLYA, G.: Inequalities. Cambridge Press 1952.
- [H] HEINTZE, E.: Extrinsic Upper Bounds for λ_1 . Math. Ann. 280 (1988), 389-402.
- [Hs] HSIUNG, C.C.: Some integral formulas for closed hypersurfaces. Math. Scand. 2 (1954), 286-294.
- [K] KOREVAAR, N.: Sphere theorem via Alexandrov for constant Weingarten curvature hypersurfaces. Appendix to a note of A. Ros. J. Differential Geometry. 27 (1988), 221-223.
- [M-R] MONTIEL, S.; ROS, A.: Compact hypersurfaces: the Alexandrov theorem for higher order mean curvatures. In: Lawson, B.; Tenenblat, K. (Eds.): Differential Geometry, a symposium in honor of Manfredo do Carmo. Pitman Monographs, 52. Longman Scientific and Technical, Essex, 1991, 279-296.
- [R-1] REILLY, R.: On the first eigenvalue of the Laplacian for compact submanifolds of Euclidean space. Comment. Math. Helv. 52 (1977), 525-533.
- [R-2] REILLY, R.: Variational properties of functions of the mean curvatures for hypersurfaces in space forms. J. Differential Geom. 8 (1973), 465-477.

394

- [Ro] ROSENBERG, H.: Hypersurfaces of Constant Curvature in Space Forms. Bull. Sc. Math. 117 (1993), 211-239.
- [S-I] EL SOUFI, A.; ILIAS, S.: Une inegalite du type "Reilly" pour les sous-varietes de l'espace hyperbolique. Comm. Math. Helv. 67 (1992), 167-181.

H. ALENCAR

Universidade Federal de Alagoas Departamento de Matemática 57080 - Maceió, AL, Brasil M. DO CARMO Instituto de Matemática Pura e Aplicada (IMPA) Estrada D. Castorina, 110 22460 - Rio de Janeiro, RJ, Brasil

H. ROSENBERG
Departement de Mathematiques
Université Paris VII
2 Place Jussieu
72251 - Paris, Cedex 05, France

395

Communicated by D. Ferus (Received April 15, 1993)