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On the  First Eigenvalue of the  Linearized Operator  of 
the  r-th M e a n  Curvature of a Hypersurface  

HILARIO ALENCAR~ ~V[ANFREDO DO CARMO AND HAROLD ROSENBERG 

Abstract: We generalize Reilly's inequality for the first eigenvalue of immersed submanifolds 
of ~m+l and the total (squared) mean curvature, to hypersurfaces of ~m+l and the first 
eigenvalue of the higher order curvatures. We apply this to stability problems. We also 
consider hypersurfaces in hyperbolic space. 
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Let M n be a closed submanifold immersed in R m+] (i.e., M is compact, connected 
and O M  = ¢), and let H1, A1 denote the mean curvature and first eigenvalue of the 
Laplacian of M, respectively. In [R-l], R. Reilly proved: 

A~ < 1 / H~ (0.1) 
n - Vol (M) 

M 

and that  equality occurs precisely if M is minimally immersed in a sphere of R m+l . 
In particular, if n = m, equality means that M is a sphere. 

This result of Reilly can easily be extended to (isometric) immersions in the 
unit sphere S m+l by applying (0.1) to the immersion of M in R ~+2 obtained by 
M -+ S m+l C Rm+~: 

1/2 A---!l -- ] < H1, V : Vol (M). (0.2) 
n - V  

M 

For immersions of M m in the hyperbolic space H re+l, the situation is more subtle. 
E. Heintze obtained some results [HI (indeed, he considers any Riemannian mani- 
fold as an ambient space). The best inequality in H "~+1 was finally obtained by 
A. E1 Soufi and S. Ilias [S-I]: 

m- ' - V H~, m > 2 ,  (0.3) 
M 

and equality occurs precisely if M is minimally immersed in a geodesic sphere of 

radius arcsh Vf-~-. 

A. E1 Soufi and S. Ilias apply this result to study stable immersions of constant 
mean curvature. In particular, they obtain the theorems of Barbosa, do Carmo 
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(ambient space R re+l) and Barbosa, do Carmo, Eschenburg (ambient spaces S m+l 

and Hm+l),  [B-dC], In-de-El: 
The stable hypersurfaces M m of Constant mean curvature, immersed in a space 

form R re+l, S "~+1, or H re+l, are precisely the geodesic hyperspheres. 
In this paper we shall continue the study of )`I(L~), where L~ is the linearized 

operator of Sr+l = (,+1)Hr+l arising from normal variations of an immersed hy- 
persurface M m C Nm+l(a),  a = 0, 4-1, Nm+l(O) = R m+], Nm+l(1) = S m+l and 
N m + l ( - 1 )  = H m+l. Here S~ is the r-th elementary symmetric function of the eigen- 
values k l , . . . , k =  of the shape operator A, i.e., So = 1, S1 = kl + ' "  + k n , . " , S ~  = 
k l . . .  ks. We refer the reader to [R-2], [A-dC-C], [Ro] for details concerning Lr. For 
short, L r ( f )  = div (T, Vf ) ,  where T~ is the r-th Newton transformation arising from 
A; To = I ,  T~ = S ~ I -  ATe- l ,  (so L0 = A). 

In R m+l we are able to generalize Reilly's result as the best possible one: 

M M 

where M is an immersed hypersurface in R m+l with H~+I > 0, and c(r) = 
( m -  r)(m). Equality holds precisely if i is a sphere. 

Using this we generalize the theorems of Barbosa-do Carmo [B-dC] (stability of a 
constant mean curvature immersion means that M is a sphere) and the theorem of 
Alencar, do Carmo, and Colares [A-dC-C] (stability of a constant scalar curvature 
immersion in t t  m+l means that M is a sphere). We prove that an immersion of 
M n in R m+l is r-stable if and only if M is a sphere. We shall explain r-stable 
subsequently; briefly, it means M is a critical point of the functional fM H~ + blP(M), 
and the second derivative of this functional at M is nonnegative. Here b is a suitable 
constant and I?(M) is the volume bounded by M. 

In H m+l we obtain an extrinsic upper bound for ) ` i t  but it is not the best possible 
one, even for r = 0. Consequently, our technique does not yield stability results here. 
We remark that Alencar, do Carmo and Colares [A-dC-C] have classified the stable 
constant scalar curvature R immersions of M m into S m+l as the geodesic spheres, 
provided R > 1, i.e. H2 = R - 1 > 0. For the moment, this is not known to hold in 
H m + l .  

1. H y p e r s u r f a c e s  in  R "~+1 

Let M = M m be an orientable closed manifold, isometrically immersed in R'~+I. 
We now establish the extrinsic upper bound for )`1, where ),1 is the first eigenvMue 
of the operator L~, r = 0, 1 , . . . , m -  1. 

T h e o r e m  1.1. I f  Hr+l > 0 on M, then 

/ / )`1 g r  < c(r) H 2 c(r) = ( m -  r) r - -  r + l ,  

M M 

and equality holds precisely if M is a sphere of R m+l. 

Proof. First observe that L~ is an elliptic operator: by surrounding M by concentric 
spheres, it is easy to find one strictly convex point of M; then H~+I > 0 implies that  
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Lr is elliptic. (The proof is essentially contained in [K]; cf. also [Ro], p. 20.) Thus, 
to establish Theorem 1.1, we shall use the minimax characterization of )~1: 

)~1 = - i n f  Ju f = (1.1) 

We now proceed with the proof of Theorem 1.1. We may assume that  fM X = 0, 
where X denotes the position vector of a point of M (just translate M,  so that  the 
center of mass is at the origin). 

For 1 g k _~ m + 1, let f = xk be the k-th coordinate function on M; X = 
( x l , . . . , X m + i ) .  Then fMf = 0 and by (1.1) we have 

~1 jf  f2 < - ~ / f ir( f) .  (1.2) 
M M 

Since Hr+l > 0 on M, it follows that  Hr > 0 on M, too ([M-R], Lemma 1). Let n 
be the unit vector field whose direction is the opposite of the mean curvature vector. 

It  is known (and not difficult) that  

L~(X) = -c(r)H~+ln. (1.3) 

For future reference we state the general formula for L r (X)  in the space form 
N'~+l(c), c = 0, +1, ([Ro], Eq. (5.2)). 

Lr(X) = -c(r)(n~+~n + cH~X). (1.4) 

Now we use (1.3) in (1.2) and sum from k = 1 to m + 1 to obtain: 

[ IXl 2 < [ .r+,<X,n). (I.5) 
q ]  

M M 

In R m+l, we have the Minkowski formulae ([Hs], p. 286; our orientation is opposite 
to that  in [Hs]): 

/ (Hr - Hr+l(X, n>) = (1.6) 0. 

M 
Thus (1.5) becomes: 

AI / [X, 2 ~_ c(r) / Hr. (1.7) 

M M 

Now multiply both sides of this equality by fM 2 H~+ 1 and use Cauchy-Schwarz to 
obtain: 

c(r ) ( /Ur) ( /H2r_F1)  ~ > )~I( / ,XN2) ( /H2r-F1) 
M M M M 

)~1 ( / I X l H r + l )  2 ~ ~1 ( / ( X ,  n}Hr+l) 2-- ~1 ( / H r ) ~  
M M M 
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Hence, we have proved: 

Al i H~ < c(r) i _  H~+1.2 (1.8) 

M M 

If equality holds in (1.8), then the equality in our use of Cauchy-Schwarz yields 
that  

(iixIH.+,)':(i<X,n>'.+,)'. 
M M 

By (1.6) and the fact that H~ > 0 on M, we conclude that fM(X,n)Hr+I > 0, so 

I IXIH~+I = i ( x , n ) H r + l .  
M M 

Thus X = kn for some function k, hence 

v ~ , ( I x l  ~) = e~.(<x, x ) )  = 2 ( e . X )  = 2k<e~, n) = 0. 

This means the equality is equivalent to iX[ = constant, i.e. M is a sphere. [] 

C o r o l l a r y  1.2. In addition to the hypotheses of Theorem 1.1 assume that Hr+l is 
constant. Then 

~, < c(r)HZl, 

and equality holds precisely when M is a sphere. 

Proof. We know that Hr >_ gJ+rl +1 and equality means that M is a sphere ([M-R], 
Lemma 1). Thus, by Theorem 1.1, we have: 

2 fM 1 2 ~ H r + ,  
A1 <_ c(r)Hr+lL--~--~ - < e t r )~ / r+ 1 - -  c(r)Hr~ ~. 

j M =- 'r  " ' r + l  
[] 

T h e o r e m  1.3. Let ~ be a compact m + 1 manifold with M = 0~, and assume 
to be isometrically immersed in R m+l so that IL+I > 0 on M. Let A1 = AI(L~). 
Then 

c(r) V(M) f 
AI _< (,n + 1)~ V(a)---T H~, 

M 

and equality holds precisely when M is a sphere. Here V( M) and V(~  ) are the 
volume of M and ~, respectively. 

Proof. Let X (also) denote the pull back of the position vector field to gt. Then 
div (X)  = ra + 1 so that 

i div X = (m + l)V(~) = i(X,n) <_ / ,X I. (1.9) 
M M 
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Hence, 

(.,+l),V(a),<(/iXl,),/(,),i.e.(m+l)'V(a)'_ V(.) _< jlXi'. 
M M 

(H0) 

Combining this with (1.7) yields Theorem 1.3. Equality in Theorem 1.3 implies: 

i (x, n) = i IXl, 
M M 

and, as before, this means M is sphere. y] 

2. S t a b i l i t y  o f  H y p e r s u r f a c e s  in R "~+1 

R. Reilly has calculated the first and second variation of fM Hr+l  ~ for normal varia- 
tions of hypersurfaces M in a space form Nm+l(c). If the normal variation is given 
by the function f on M, then 

-'<,, I / ' , ) - -  i + 1)..+, + . . - . +  
M M 

where Sj is the j - th  symmetric function of M ([R-2], p. 470). 
Now let c = 0 and h(X) = (X, n(X)) be the support function of M "~ ~ R m+l. 

It is well-known that 

1 

M M 

Thus, for any real number b, we have: 

M M 

Hence, the critical points of the functional J : M ~ f(S~ + bh) are those manifolds 
M 

b M for which S~+1 is the constant (~+l)(m+l)" 

A stable critical point is a point where J"(0) > 0 for all normal variations. One 
can easily compute the second variation of J by using equation (9) of Reilly [R-2] 
(of. §2 of [A-dC-C]): 

= i - ( r  + 1)fLr(f) + [(r + 1)e(r + 1)Hr+2 - mc(r)H1Hr+l]f 2. (2.2) J " (0) ( f )  

M 

Now we can state: 

T h e o r e m  2.1. Let M m be a closed hypersurface in R m+l with H~+I constant. 
Then M is stable if and only if M is a sphere. 

Proof. We apply (2.2) for f being the first eigenfunction of Lr : L~(f) + Ai f  = O. 
Assuming that Hr+l is constant (hence positive) and M is stable we have: 
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[(r + 1)A, + (r + 1)c(r + 1)Hr+2 - > (2.3) mc(r)H1Hr+l]f  2 O. 

M 

~+2 

By Corollary 1.2 we know: Al l  2 _< c(r)H~_~f  2, hence: 

[(r + 1)c(r)Hr~ 1 + (r + 1)c(r + 1)Hr+2 - mc(r) I t l I I r+l] f  2 >_ O. (2.4) 
M 

We know that  II~Hr+2 _< HI+l ,  r = 0 , . . . , m  - 2, with equality at umbilical points 
([B-M-V], p. 285, Theorem 1 and p. 288, Remark 3. Furthermore, one can consult 
[H-L-P], p. 104). By induction, we can see that  if Hr+l > 0, this implies: 

H1H~+I >__ H~+2, 

. with equality at umbilical points. 
Thus, since (r + 1)c(r + 1) = (m - r - 1)c(r), 

~+2 

(r + 1)c(r)H~_~ + (r + 1)c(r + 1)H~+2 - mc(r)HiHr+l  

< (r + 1)c(r)H~_~ + (m - r - 1)c(r)H1gr+l - m c ( r ) g l H r + l  

= (r + 1)c(r)Hr~ l - (r + 1)c(r)HiH~+l 

= (r  -{- 1 ) c ( r ) ~ H : ~  - H I H r + I ) .  

1...!_ 
_ r4r+' with equality at umbilical points ([M-R], Lemma 1), we have Since H1 > **r+l 

HIH~+i  ~ Hr¢. ] , hence 

(r + 1 ) c ( r ) H ~  + (r + 1)c(r + 1)Hr+2 - mc(r)HiH~+l <_ O. 

By (2.4) we must have equality everywhere, hence M is a sphere. [] 

3. H y p e r s u r f a c e s  o f  H y p e r b o l i c  S p a c e  

Let M TM C H m+l be a closed hypersurface and let X = (J(, x) E R m+2, )(  E R re+l, 
x C R +, denote a point of H m + l  in the Minkowski model. We think of X as the 
position vector field of M. The metric on H "~+1 is that  induced by 
dx~ + 2 2 . . ,  + dx,~+l - dxm+ 2 and 

H m + l  = { (~ t ,  x ) / 121  ~ - .~  = - 1 } .  

Here ) (  --= ( X l , . . .  , Xm+l) , X : X m +  2 ~> 0, and l)( I is the Euclidean norm on p m+l. 
It  is clear from the definition of the metric that  Euclidean isometries T of R "~+1, 
induce isometries of H m+l by (_~, x) ~ (TX,  x). Thus, after an isometry of H "~+1 
induced by a translation of R re+l, we can ~ssume the center of gravity of the 
coordinate of M to be at 0; i.e., f xj  = 0, 1 < j < m + 1. For fixed j ,  let f = xj .  

M 
Let N be the unit normal vector field to M in H m+l whose direction is the opposite 

of the mean curvature vector of M (assuming this vector to be nonzero). Then, if 
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L = Lr is the linearization of the r + 1-st symmetr ic  function of curvature  of M,  we 
have the vector equation (1.4): 

L ( X )  = - c ( r ) ( H r + I N  - H r X ) ,  c(r) = ( m -  r ) ( m ) .  

This represents m + 2 equations for the coordinate functions of X and N.  We have 

L ( f )  = - c ( r ) ( H r + l n j  - H~xj) .  

Thus 

- f L ( f )  = c ( r ) (Hr+ln j x j  - H~x2), 

and summing up from j = 1 to m + 1: 

- ( m  + 1 ) f L ( f )  = c ( r ) ( H ~ + l ( N , f ( )  - HT[)(t2), 

where N is the projection of N to R m+l. 
Now we proceed as in the Euchdean case to estimate A1 = ALL 

~, f f2 <_- f fL(f) 
M M 

becomes 

A1 c(r) f ':t12 H~,)(]2). 
M M 

Now X • X = - 1  and X .  N = 0, hence I)(I 2 = x 2 - 1 and { X , N )  = xn,  where 
n = - e -  N and e = ( 0 , . . . ,  0, 1) E R m+2. Since X,  N and the tangent  space to M at 
X generate the vector space R n+2, the gradient Vx of x (in the metric on M )  can 
be wri t ten as 

V x  = e + (e . X ) X -  (e .  N ) N  = e -  x X  + n N  

(cf. [B-dC-E], p. 131). Thus 

0_< IVxl 2 = - l + x  2 - n  2, 

hence 

x 2 + n 2 1 1 
xn  < 2 < x2 - = _ ~ _ -~ P 212  + ~ .  

r 

_ ~ + 1  and let ~ r = s u p H ,  H = i n f H .  Then Assume H~+I > 0, so tha t  Hr > ~'r+l , 

_ H~I j?I  2 < _ r r ~ - - ~  - ~ + 1  IX l  =, 

and 

+ 1  H f Hr+l(X,~¢)<_[-Ir+l f lX[ 2 -~ f r + l .  

Thus 

z~ 1 1 f Hr+l  r¢ ~+-zT~ 
C(r---') -< Hr+l  + 2 f [2[  2 -~-r+X" 
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We have 

/ I f f l2/Hr2+l>__ / n 2 / H 2 + 1 > _  ( / H r + ] n )  2= ( / H r x )  2~- ( / H r )  2 

Here  we have used ]j~]2 = z 2 _ 1 > n 2 and f Hr+ln = f grx  and since L is a 
divergence operator  so f L (X)  = 0 by Stoke's theorem. The last inequality follows 
from x > 1. Thus we have proved: 

T h e o r e m  3.1. Let M be a closed hypersurface immersed isometrically in H m+l 
and suppose Hr+l  > 0 on M. Then 

- - 3  r 
)~1 1 Hr+ 1 /~r r+-'Y 

</L+I + 2 Hi  r+l" 

I f  Hr+l  is constant (necessarily Hr+l > 1), this becomes: 

, _ - ' H  ~+x c(r) < H~+1+ 2 ~+1-1" 
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