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On the First Eigenvalue of the Linearized Operator of
the r-th Mean Curvature of a Hypersurface

HILARIO ALENCAR, MANFREDO DO CARMO AND HAROLD ROSENBERG

Abstract: We generalize Reilly’s inequality for the first eigenvalue of immersed submanifolds
of R™*! and the total (squared) mean curvature, to hypersurfaces of R™*! and the first
eigenvalue of the higher order curvatures. We apply this to stability problems. We also
consider hypersurfaces in hyperbolic space.
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Let M™ be a closed submanifold immersed in R™*! (i.e., M is compact, connected
and OM = ¢), and let Hq, Ay denote the mean curvature and first eigenvalue of the
Laplacian of M, respectively. In [R-1], R. Reilly proved:

A] 1 2

—_— < —— .

n = Vol(M)/H1 (0-1)
M

and that equality occurs precisely if M is minimally immersed in a sphere of R™*1,
In particular, if n = m, equality means that M is a sphere.

This result of Reilly can easily be extended to (isometric) immersions in the
unit sphere $™*1 by applying (0.1) to the immersion of M in R™*2? obtained by
M — S+t c R™t2:

A1 1

— —-1< = 2 = . .
. 1_V/H1, V = Vol (M) (0.2)
M

For immersions of M™ in the hyperbolic space H™1!, the situation is more subtle.
E. Heintze obtained some results [H] (indeed, he considers any Riemannian mani-
fold as an ambient space). The best inequality in H™*! was finally obtained by
A. El Soufi and S. Tlias [S-1]:

M 1
—54—15-‘7/113, m>2, (0.3)
M

and equality occurs precisely if M is minimally immersed in a geodesic sphere of
radius arcsh %";

A. El Soufi and S. Ilias apply this result to study stable immersions of constant
mean curvature. In particular, they obtain the theorems of Barbosa, do Carmo
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(ambient space R™*1) and Barbosa, do Carmo, Eschenburg (ambient spaces S™*!
and H™*1), [B-dC], [B-dC-EJ:

The stable hypersurfaces M™ of constant mean curvalure, immersed in a space
form R™HL, §m+1 or H™H1 gre precisely the geodesic hyperspheres.

In this paper we shall continue the study of Ai(L.), where L. is the linearized
operator of S,41 = (Tfl) H,,, arising from normal variations of an immersed hy-
persurface M™ C N™*1(a), a = 0, £1, N™*1(0) = R™*+1, N™H1(1) = §™+1 and
N™+1(—1) = H™*1, Here S, is the r-th elementary symmetric function of the eigen-
values k1,...,k, of the shape operator A,ie., So=1,85 =k + -+ ky,-+,5 =
ki ...k,. We refer the reader to [R-2], [A-dC-C], [Ro] for details concerning L,. For
short, L,(f) = div (T, V f), where T} is the r-th Newton transformation arising from
A;To=1,T, =8I — AT, 1, (s0 Lo = A).

In R™*! we are able to generalize Reilly’s result as the best possible one:

)‘fr/Hr < c(r)/Hf_H,
M

M

where M is an immersed hypersurface in R™*! with H,y; > 0, and ¢(r) =
(m — 7)(7). Equality holds precisely if M is a sphere.

Using this we generalize the theorems of Barbosa-do Carmo [B-dC] (stability of a
constant mean curvature immersion means that M is a sphere) and the theorem of
Alencar, do Carmo, and Colares [A-dC-C] (stability of a constant scalar curvature
immersion in R™*! means that M is a sphere). We prove that an immersion of
M™ in R™*! is r-stable if and only if M is a sphere. We shall explain r-stable
subsequently; briefly, it means M is a critical point of the functional [ uH OV (M),
and the second derivative of this functional at M is nonnegative. Here b is a suitable
constant and V(M) is the volume bounded by M.

In H™+! we obtain an extrinsic upper bound for /\IL’, but it is not the best possible
one, even for r = 0. Consequently, our technique does not yield stability results here.
We remark that Alencar, do Carmo and Colares [A-dC-C] have classified the stable
constant scalar curvature R immersions of M™ into S™1! as the geodesic spheres,
provided R > 1,i.e. H; = R— 1> 0. For the moment, this is not known to hold in

H™HL,
1. Hypersurfaces in R™*!

Let M = M™ be an orientable closed manifold, isometrically immersed in R™+1,
We now establish the extrinsic upper bound for A, where A; is the first eigenvalue
of the operator L., r =0,1,...,m — 1.

Theorem 1.1. If H,4; > 0 on M, then

n [ <) [t a0 =)

and equality holds precisely if M is a sphere of R™t1,

Proof. First observe that L, is an elliptic operator: by surrounding M by concentric
spheres, it is easy to find one strictly convex point of M; then H, 1 > 0 implies that
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L, is elliptic. (The proof is essentially contained in [K]; cf. also [Ro], p. 20.) Thus,
to establish Theorem 1.1, we shall use the minimax characterization of A;:

3 Jar FL=(S)
M=o [ YR Y

We now proceed with the proof of Theorem 1.1. We may assume that fM X =0,
where X denotes the position vector of a point of M (just translate M, so that the
center of mass is at the origin).

For 1 < k <m+1,let f = z; be the k-th coordinate function on M; X =
(€15+..,€ms1). Then [, f = 0 and by (1.1) we have

f:O] . (1.1)

M / < / FL.(S). (1.2)
M

Since H,41 > 0 on M, it follows that H, > 0 on M, too ([M-R], Lemma 1). Let n
be the unit vector field whose direction is the opposite of the mean curvature vector.
It is known (and not difficult) that

L (X)= —e(r)H 41n. (1.3)

For future reference we state the general formula for L,(X) in the space form

N™*1(¢), ¢ =0, £1, ([Ro], Eq. (5.2)).

L(X)= —c(r)Hry1n + cH.X). (1.4)
Now we use (1.3) in (1.2) and sum from k£ = 1 to m + 1 to obtain:
A1/|X12 < c(r)/HH_l(X,n). (1.5)
M M

In R™*1 we have the Minkowski formulae ([Hs], p. 286; our orientation is opposite

to that in [Hs]):
/(HT — Hypn(X,n)) = 0. (1.6)
M
Thus (1.5) becomes:

a [ 1XE <o) [ (1.7)
M M

Now multiply both sides of this equality by f,, H2,, and use Cauchy-Schwarz to
obtain:

() f122) 25 ) [
>,\1 /IX|H,+1 > ,\1 A{X ) Hy _,\I(AZHT)%
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Hence, we have proved:

)qAZHT < c(r)}! HZ,,. (1.8)

If equality holds in (1.8), then the equality in our use of Cauchy-Schwarz yields
that

(fpm)’=( [xmma)

M
By (1.6) and the fact that H, > 0 on M, we conclude that [, (X,n)H, 41 > 0, so

/leHT+1 = /(X,n>Hr+1~
M M

Thus X = kn for some function k, hence
Ve (IX1%) = ei((X, X)) = 2e;, X) = 2k{ei, n) = 0.
This means the equality is equivalent to | X | = constant, i.e. Misa sphere. G

Corollary 1.2. In addition to the hypotheses of Theorem 1.1 assume that H.,y is
constant. Then

2
)\1 S C(’I’)H,,_rii,
and equality holds precisely when M is a sphere.

Proof. We know that H, > H:_/JIH and equality means that M is a sphere ({M-R],
Lemma 1). Thus, by Theorem 1.1, we have:

Jul H} o

A <e(r)H?, <e(ry—===c(r)H }.

- - r/r+1 r+1
fM HT H’r-{-l

a

Theorem 1.3. Let  be a compact m + 1 manifold with M = 09, and assume
to be isometrically immersed in R™t! so that Hyyy > 0 on M. Let Ay = A(L,).
Then
e(r) V(M)
< . .
M= Gy iE viay
M

H,,

and equality holds precisely when M is a sphere. Here V(M) and V(Q) are the
volume of M and 2, respectively.

Proof. Let X (also) denote the pull back of the position vector field to Q. Then
div (X)=m + 1 so that

/MX=WHUWW=ﬂXMS/ML (1.9)
M

Q M
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Hence,

(m+ 1?V(0) < ( / XP)V(M), ie. (m +V1();;;(Q)2 / X[ (1.10)
M

Combining this with (1.7) yields Theorem 1.3. Equality in Theorem 1.3 implies:

Jexm =[x
M M

and, as before, this means M is sphere. 0

2. Stability of Hypersurfaces in R™*!

R. Reilly has calculated the first and second variation of |, a Hry1, for normal varia-
tions of hypersurfaces M in a space form N™*!(¢). If the normal variation is given
by the function f on M, then

%'t=0(/5r) = /f{—(r + 1)Sr1 +c(m — 7+ 1)8r1}, (2.1)
M M

where §; is the j-th symmetric function of M ([R-2], p. 470).
Now let ¢ = 0 and A(X) = (X,n(X)) be the support function of M™ — R™+1,
It is well-known that

ool /1) = 71 [
M

M

Thus, for any real number b, we have:

—(Al S, + bh) :A{f{~(r+1)5,+1+;%}.

Hence, the critical points of the functional J : M — [ (S, + bh) are those manifolds
M

M for which S,4; is the constant (T-Fi)l(,T}—_ﬂ
A stable critical point is a point where J”(0) > 0 for all normal variations. One

can easily compute the second variation of J by using equation (9) of Reilly [R-2]
(cf. §2 of [A-dC-C]):

IO = [~ DL+ [+ Vel + ) Hoga = molr)Hu o] 12 (2:2)
M

Now we can state:

Theorem 2.1. Let M™ be a closed hypersurface in R™*! with H,,; constant.
Then M is stable if and only if M is a sphere.

Proof. We apply (2.2) for f being the first eigenfunction of L, : L,.(f) + A1 f = 0.
Assuming that H,; is constant (hence positive) and M is stable we have:
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/[(T + 1))\1 + (’!‘ + 1)(1(7' + 1)HT+2 - mC(T)HlHT.H]fZ > 0. (23)
M

By Corollary 1.2 we know: Ay f2 < c(r)H”} f2, hence:

/[ r+1) c(T)HT'j_{ + (r+ Ve(r + 1) Hypyy — me(r)HyH, ]2 > 0. (2.4)

We know that H, H,4o < HTZH, r=0,...,m— 2, with equality at umbilical points
({B-M-V], p. 285, Theorem 1 and p. 288, Remark 3. Furthermore, one can consult
[H-L-P], p. 104). By induction, we can see that if H,4; > 0, this implies:

H1H1'+1 2 H’r+2a
. with equality at umbilical points.
Thus, since (r + 1)e(r + 1) = (m — 7 — 1)e(7),
42
(r+ De(r)H31 + (r+ De(r + 1) Hypo — me(r)HiHe gy
32
S(r+De(r)H 7} +(m—7—1)e(r)H Hppy — me(r)H Hpq4

r42

= (r+ De(r)H}] — (r+ De(r)H1H,yy

+2
= (’I‘ + 1)C(T)(HTT_I+_i bl HlHT+1).

Since H; > Hr+1 with equality at umbilical points ([M-R], Lemma 1), we have
2
HH,41 > Hr+1’ hence

(r+ )e(r) T'_ti +(r+ De(r+1)H, 42 — me(r)H1H 1y <0.
By (2.4) we must have equality everywhere, hence M is a sphere. 0O

3. Hypersurfaces of Hyperbolic Space

Let M™ C H™*! be a closed hypersurface and let X = (X,z) € R™+2 X ¢ R™+!,
z € R*, denote a point of H™t! in the Minkowski model. We think of X as the
position vector field of M. The metric on H™*1 is that induced by

dz? + ...+ dz2 . — dz? , and

H™ = {(X,2)/1X[? - o* = -1}

Here X = (1,4, Zmt1)s T = Tyy2 > 0, and |X| is the Euclidean norm on R™+1,

It is clear from the definition of the metric_that Euclidean isometries T of R+,

induce isometries of H™*! by (X,z) — (TX,z). Thus, after an isometry of H™+!

induced by a translation of R™!, we can assume the center of gravity of the X

coordinate of M to be at 0;i.e.,, [ z; =0, 1 <j < m+ 1. For fixed j, let f = ;.
M

Let N be the unit normal vector field to M in H™+! whose direction is the opposite
of the mean curvature vector of M (assuming this vector to be nonzero). Then, if
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L = L, is the linearization of the r 4 1-st symmetric function of curvature of M, we
have the vector equation (1.4):

LX) = —e(r)(HoaN — H,X), ¢(r)=(m— r)(m>.
This represents m + 2 equations for the coordinate functions of X and N. We have
L(f) = —e(r)(Hyy1nj — Hrzj).
Thus
~fL(f) = e(r)(Hranjz; ~ Hyz}),
and summing up from j =1tom + 1:
~(m + 1)fL(f) = e(r)(Hrpr (N, X) — H | X]?),

where N is the projection of N to R™+1,
Now we proceed as in the Euclidean case to estimate Ay = )\f’.

Al/ﬁs——/fL(f)
M M

becomes

o) /IXP / (Hr1(N, X) - H|X]).

Now X - X = —1 and X - N = 0, hence |X|? = 22 — 1 and (X, N) = zn, where
n=—e-N and e = (0,...,0,1) € R™*2. Since X, N and the tangent space to M at
X generate the vector space R"t2, the gradient Vz of z (in the metric on M) can
be written as

Ve=e+(e- X)X —(e-N)N=e—zX +nN
(cf. [B-dC-E], p. 131). Thus
0 < |Vz|* = -1+ 22— n?

hence

Assume H,.; > 0, so that H, > HT'_:; ,and let # =sup H, H = inf H. Then

r g ~
- [mixp < -a7f [z,

/H'r+1 ) < Hr+1/lX|2 /H'r+1

Thus
Mg V[H o

C(’I‘) = T+1 + - 9 f!X’Z Zr41c
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We have

/|)‘(|2/HEJrl > /nz/Hfﬂ > (/HT+1n>2 = (/H:z:)2 > (/H)2

Here we have used |X|? = 22 = 1 > n? and [ Hyy1n = [ H,x and since L is a
divergence operator so [ L(X) = 0 by Stoke’s theorem. The last inequality follows
from z > 1. Thus we have proved:

Theorem 3.1. Let M be a closed hypersurface immersed isometrically in H™ 1!
and suppose H,11 > 0 on M. Then

lf{f+1 _ g

A _
~—1-<HT+1+2?~ g

e(r) ~
If H.41 is constant (necessarily Hyyq > 1), this becomes:
M i

1
< _ r+1 _1
oy S Hrei + 3 HL
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