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1 Introduction

(1.1) It is well known that hypersurfaces M" with constant mean curvature
in a Riemannian manifold M"*!(c) of constant sectional curvature ¢ are solu-
tions to the variational problem of extremizing the area function for volume-
preserving variations. In [BdCE] a notion of stability for this situation was
considered and it was proved that if M" is compact and stable, and M"*'(c)
is complete and simply-connected, then M” is a geodesic sphere.

Less widely known but equally true is that hypersurfaces M" of M"*!(c)
with constant scalar curvature are solutions to a similar variational problem,
namely, of extremizing the integral of the mean curvature for volume-preserving
variations. This has been known since at least 1973 and follows from a paper
of Reilly [R] (see also the references there). The situation is actually more general
than that. Let us denote by S, the r'® elementary symmetric function of the
principal curvatures of M", r=0, 1, ..., n, and consider the problem of extremiz-
ing | S,dM under arbitrary variations. Then Reilly computed [R, p. 470] the

M

formulas for the first and second variations of such a problem; from these
formulas the above statement follows (see § 2 of this paper). Thus, in analogy
with the case of constant mean curvature, questions of stability can be considered
for hypersurfaces with constant scalar curvature.

We want to extend to hypersurfaces with constant scalar curvature the above
stability result on constant mean curvature. So far, we have been able to solve
the cases where M is the euclidean space R**! and M is the sphere S** ! (¢)cR"*?
of constant curvature ¢ >0. More precisely, we prove

(1.2) Theorem. Let M"*'(c) be a complete, simply-connected Riemannian mani-
fold with constant sectional curvature ¢ =0, and let x: M" — M"*1(c) be a compact
orientable hypersurface with constant scalar curvature R. If ¢ >0, assume, in addi-
tion, that M" is contained in an open hemisphere of M"*!(c)=S"*1(c). Then
M is stable if and only if it is a geodesic sphere.
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One interesting fact about the stability question for hypersurfaces of constant
scalar curvature is that it involves the study of a second order differential opera-
tor related to the second fundamental form which appeared also in a paper
of Cheng and Yau [CY] who used it to classify the complete noncompact
convex hypersurfaces with constant scalar curvature in R** 1.

(1.3) Remark. If x is an embedding, the result of Theorem 1.2 holds without
any assumption of stability (see [MR]). By using the methods of equivariant
geometry, one should be able to construct examples of nonspherical compact
hypersurfaces with constant scalar curvature.

(1.4) Remark. It has been pointed out to us by Barbosa and Sa Earp that
the operator above mentioned is elliptic if the scalar curvature is constant and
greater than that of the ambient space. This should have interesting implications.

(1.5) Remark. It the context of surfaces with constant Gaussian curvature in
a three-space form, we first heard from the above variational problem from
H. Rosenberg. We want to thank him for sharing this information with us.

2 The variational problem for constant scalar curvature

(2.1) In this section, we adapt § 2 of [BACE] to the present situation.

Let M"* !(c) be an oriented Riemannian manifold of constant sectional cury-
ature ¢ and let x: M"— M"*!(c) be an immersion of a compact, connected,
orientable manifold M with boundary M (possibly, dM =¢) into M"*1(c).
Choose an orthonormal frame {e,, ..., e,,,} around x(p), peM, in M so that
e, ..., e, are tangent to x(M) and dM{e,, ..., e,+,)>0, where d M is the volume
form of M; then e, ;=N is globally defined and gives an orientation for M.

A variation of x is a differentiable map X: (—¢, &) x M — M, £>0, such that,
for each te(—z¢, ), X,(p)=X(t, p), peM, is an immersion, X ,=x, and X,|;5
=x|;5. We define the volume function V: (—¢, &) > R of X by

V)= | X*dM.

0,11 xM

We will need the first three symmetric elementary functions of the principal
curvatures k,, ..., k, of an immersion x, namely:

S1=Zki, S2=Zkikja S3= Z kikjkt’

i<j i<j<¢ -

i,j,=1,...,n Recall that the mean curvature H and the scalar curvature R
of x are given by:

2

1
H*;Sl, R—C—W—_—l’)'sz.

Let X be a variation of x: M" — M"*1(c) and W(p)=% be the variation-
t=0
al vector of X. Set f=<W, N) where N is the unit normal vector along x.
A variation is normal if W is parallel to N and volume-preserving if V()= "V (0)
for all ¢.
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(2.2) Lemma.

(® Ed;g nH(t) thl,:o=A£ (—n(n—1) (R—c)+cn) fdM,

.. dVv
(11):17

t=0

= | fam.

Proof. (i) is just a translation in our notation of the formula for the first variation
in p. 470 of {R]. (ii) has been proved in [BdCE, p. 125]. O
Now set
R,=A"' [ RdM, A= {dM,
M M

and define J: (—¢, &) > R by

J(t)=n [ H®)dM,+(n(n—1)(R,—c)—cn) V(1)

(2.3) Lemma. Let x: M" — M"*1(c) be an immersion. The following statements
are equivalent:

(i) x has constant scalar curvature R,.
(ii) For all volume-preserving variations,

d
7 InH@®dM|,_o=0.
M

(iii) For all variations, J'(0)=0.

Proof. The proof follows the same pattern of the proof of Proposition 2.7 in
[BAC] using Lemma 2.2 of [BACE]. We shall omitit. []

Before presenting the second variation of J we need to introduce the operator
mentioned in the Introduction. For that, consider for each pe M the linear
map " T, M—->T,M

T=nHI—B,

where I is the identity map and B is the linear map associated to the second
fundamental form of x along N. In an orthonormal frame {e,, ..., e,} around
p, the matrix of T'is

ij»

where h;; is the matrix of B. Let f be a differentiable function on M and let
f;; be the matrix of the hessian of f. We will define an operator [ acting

on f by

Df=Z Tijfij:Z(nHéij_hij)fij-

i,
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This operator was considered by Cheng and Yau in [CY]. Since T;; is divergence-
free [R, p. 470] it follows [CY] that the operator ] is self-adjoint relative
to the I? inner product of M, ie.,

frog={g0f

We are now in a position to compute the second variation of J(t).

(24) Lemma. Let x: M" — M"**(c) be a hypersurface with constant scalar curva-
ture R and let X be a variation of x. Then J'(0) depends only on f and it is
given by

J'ON==-2§(Of+/*[3n*(n—1)(R—c)H+cn(n—1) H—38,])dM.

Proof. We first observe that

%{-z j. [(—=n(n—1D(R,—c)+cn)+(n(n—1)(R,—c)—cn}] f,dM,.

Here R, is the scalar curvature of X,, dM, is its volume eclement, and f,

0X . .
=(~——, N,), where N, is the unit normal vector of X,. Thus, setting n(n—1)(R,
ot
—c¢)=—A,, we can write
DJ

= [ A=A faM,.

M
It follows that

dZJ , , ' a
E_t_2_=j‘Atftht_,_j'A'ft dM’——j A, f, dM,-f’j.(At_Ao)fzé_tht
M M M M

which, for t=0, gives

@
dtz t=0

O0R
ot

- § dfim=— | (o= 0)) 7
M M

Now, we use the formula (9¢) in [R, p. 469] to obtain
bn(n—1) Q)= {(42(n—1) (R—c) H~3S )+ cnla— 1) H} + 1 f

and this completes the proof. []
We can now define stability.

(2.5) Definition. Let x: M"—> M"*!(c) have constant scalar curvature. The
immersion x is stable if

d2 .
iz fnH,dM,|,-, 20,
M
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for all volume-preserving variations of x. If M is non compact, we say that
x is stable if for every compact submanifold M C M with boundary, the restriction
X| 4 1s stable.

Just as in [BACE] we can prove the following criterion of stability. Let &
the set differentiable functions f: M —R with f|;,,=0 and | fdM=0. Then

x: M"— M™*1(c) with constant scalar curvature is stable if and only if
J'0)(f)=0, forall fe&Z
We can also introduce a notion of a Jacobi field for the present situation.
Since this is quite similar to the case treated in [BACE], we omit the details.

We will close this section by proving that there exist stable hypersurfaces
with constant scalar curvature.

(2.6) Proposition. Let M"*(c) be complete and simply-connected and let
Z*C M"*1(c) be a geodesic sphere. Then X is stable.

Proof. Choose f: 2 — R such that j fdM =0. Since X is umbilic, we have that
| B|>=nH? and that

Of=m—-1)HAf,

where 4 f is the Laplacian of f in 2. From the formula for the second variation
of J, we obtain

J'O)(f)=—2n—1) [HfAS

—2{f2[3n*(n—1)(R—c)H+cn(n—1)H—38;].
P

Since
tr B>=nH|B|>*—4n*(n—1) HR—c)+ 383,

we obtain, by umbilicity,
—4n*(n—1)H(R—c)+3S;=tr B3—nH|B||*= —n(n—1) H>.
Thus, by Stokes’ theorem,
J”(O)(f)=2(n—1)HEf(HVfllz—n(c+H2)f2)
22(n—1) H [ (uZ)—n(c+H) f?,
z
where p(X) is the first eigenvalue of the Laplacian 4 in X. Since X is a sphere

u(X)=n(c+H?. Hence J"(0)(f)=0, for all f such that _[fdM 0, and X is
stable as we wished. [
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3 Preliminary results

(3.1) We use the method of moving frames. Let x: M"— M"*!(c) be an immer-
sion of a smooth manifold M" into a Riemannian manifold M"*! (¢ ) with con-
stant sectional ¢. Choose pe M and a local orthonormal frame {e,, ..., e,, €,
=N} in M"*!(c) around x(p), so that e,, ..., e, are tangent to x(M). Take
the corresponding coframe {wy, ..., w,, w,, ,} and write the structure equations
(indices A4, B, C range from 1 to n+1):

dWszwAB/\WB, Wip= —Wpy
B

AW =) WacAWcp+ R4,  Rup=—p4,
c

where 5 is the curvature matrix of M, ie.,

1 _
Qup=—7% Z R ypcp We A Wp.
c.p

If we denote by the same letters the restrictions of w, and w,z to x(M),
we can separate the tangent part of the above equations (latin indices range
from 1 to n):

dw,=Y w;;Anwj,
J
1

3 ZRijk{ Wi AW,

dwij=zwik/\wkj+9ij9 Qijz
k k,¢

where R, ;. is the curvature tensor of the induced metric on M.
Notice that the restriction of w,, ; =0. Thus since

0=dwn+lzzwn+1,j/\ wj,
j
we can write

Wj.n+1=2kjkwka hjkzhkj-
k

The quadratic form Y h; w ; Wy is the second fundamental form B of the immer-
Jr k
sion. It relates the curvatures of M and M by the Gauss’ formula:

(3.2 Rijk(=ﬁijk/_(hit hjk“hik hjt)-
Notice that in M"*1(c),
(3.3 Eijkz=c(5ik 5j£—5i( 5jk)-

For a smooth function f on M, the gradient and the hessian ( f;;) are defined
by:

df=Zf,-w,-, Zﬁjwjzdﬁ+2fjwj,~.
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Similarly, the covariant derivative of the second fundamental form is defined
by

(34) Zhijkwk=dhij+zhkjwki+zhikwkj‘
k k k
The second fundamental form satisfy the Codazzi equation, ie., h;;,=h

It follows that h; ;; is symmetric in all indices.
The second covariant derivative of h;; is defined by

ikj

Zhijk( wp=dh;j+Y My Opi+ Y i wmj+zhijm Oy
4 m m m

By exterior differentiation of (3.4), one can show that the following “commuta-
tion formula” holds

(3-5) hjt’ki_hj{ik= —thz ijik*zhjm Rm{ik'

Finally, for a smooth function f on M, we recall that

Of= Z (nH &y, —hyy) fres

k.t
where nH=Y h;;.
We start with a simple lemma that is quite general.

(3.6) Lemma. Let f,g: M" > R. Then

D(fg)ngf+ng+2nHZﬁcgk_zzhktfkg(‘
X k¢

Proof. Clearly the hessian of fg is given by

(f&r=8rfu+1r 8kt 8Siet S 8ie
Thus

O(f8)= Y. (nH 6, — hi) (f e

k.t

=gOf+f0Og+ Z("H Oxe—his) fr 82
K.z

+ Z (nH 0 —hy,) fr 8
k,¢

and the lemma follows.

(3.7) Lemma. Assume that R =const. Then
1
DH=;|IVBH2—'1 IVH|*+(n—1)(R—c) | B|?

—%nz(n—l)Hz(R—c)+3H S;+clBl*—nH2c.
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Proof. It is known that
n*H*=% hi,=n(n—1)(R—c).
k.t

Take the hessian of both sides to obtain

nzHi Hj+n2HH,-j—~thﬁ hk/j_zhklhk/ijzo‘
k, ¢ k¢

Setting i =J, using Codazzi equation and (3.5), we obtain

n*(H)*— Z hisi=—nH D R+ Y e Bigr
k¢ X

k,¢

=—nH Z(hikik—zhmk Rmiik_zhim Roxi)
k m m
+ 2 (Mo Bigix—hue Z Mne Ronii— hk;Z i Ronsin)
k.¢ m m

=—nHY 6 hu,+ Z his hisox+nH Z (Ppie Romiix + Him Roniisd)
k¢ k.¢

k,m

- Z (hk( hml Rmiik+hk{ him Rmtik)-

k.f,m
Thus
O hii:: Z hl%ti‘ n? (Hi)z - Z (hk( hm( Rmiik + hkt’ Rim Rm(ik)
k,¢

k.Z,m

+nH Z (Pmk Roniix + him Rongin)-
k,m

Using the Gauss’ Eq. (3.2), we obtain from the above
Ohy= Z hf;i“‘ "Z(Hi)z
k,¢

- 2 {hk! hm{ Emiik +hk{ hm( hmi hik-hk( hm( hmk hii
k,t,m
+ Byg Bim Rongin+ Pg Wi Mo — g iy B B}
+nH Z oy Rniir+nH Z Pose s i—n H Z ki hi+nH Z Pim Ronkik
k,m k,m k,m k,m

+nH Z hlzm hkk*nH z him hmk hki
k,m k,m

= Z hiyi—n?(H)?— z Pis Pe Ryiin +(tr B3 by,
k,¢ k., m
- Z hir Bim Roppix— | BI)? zhizm+nH Z B Rpiix—nH || B)|? hy;
m k,m

k,t,m

—nH Y hip Rpg+n*H? Y hE,.
k,m m
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By (3.3), we then have
D hii= —C z hkt hm((émi 5ik_5mk 5ii)_c Z hk( him((smi 6{k”5mk 5(i)

k,Z,m k,¢,m
+nHc Z Pk Omi Ok — i 0:) +RH € Y 1y (8 ps Ot — S 1)
k,m k,m

+(tr B}) h;;+n(n—1) (R“‘C)zhizm“nH ”B|12hii+zhfﬁ“"2(Hi)2

k.t

=Y hipi—n*(H)*+c||B|*—n*H*c+n*Hch;—nHch;
k,Z
+(tr B®) hy+n(n—1)(R—c) Y hi,—nH | B|? hy;.
Thus

(3.8) n[dH=|VB|?—n?|VH|?+nc|B||>—n*cH?+nH(tr B
+n(n—1)(R—c)||B|I* —n* H* | B|*
— |VB|?—n? |VH||>+nc|B||>*—n? H*c+nH(tr B)— | B|*.

Finally, using in (3.8) the fact that
39 tr B*=nH||B||>*~4n?(n—1) H(R—c)+38S,;,

the lemma follows. []

4 Proof of Theorem 1.2
In this section, we will use the notation of §3. We will need the following
lemma.

(4.1) Lemma. Let x: M"— M"*(c) be an immersion with constant scalar curva-
ture R. Assume that R—c¢=0. Then

1
—IIVB|*—n|VH|*20.

Here B is the second fundamental form and H is the mean curvature of x.
Proof. We know that
n’ H* =Y hi,=n(n—1)(R—c).

k.t

Taking the covariant derivative of the above expression, and using the fact
that R =const., we obtain

nHH;= Z Bee s
k¢
It follows that

Z n4H2(Hi)2 = Z(Z hye he)* < (Z hin)( Z hl%ti)a
i k.t

i k¢ k,¢,i
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that is,
n*H*||\VH|><||B||*|[VB|>.

On the other hand, if (R—c¢)= 0, we have that n2 H> —{|B|2=0. Thus

n*H*|VH|?<H*|VB|*

and the lemma follows.
(4.2) Proof of Theorem 1.2 for c=0

Assume that x is stable. We first observe that if this is the case,

~J"(0)(f)=2 | (3n*(n—1) HR—3S5) >+ f)dM <0

M

for all functions f: M — R with | fdM =0. To choose a convenient test-function,
M

observe that the second Minkowski’s formula [H, p. 286] gives

{ (H+gR)dM =0,
M

where g={x, N is the support function of x: M"—R"*!, Thus we can choose
f=H+gR.
Let us compute the integrand of J”(0) (f) for f=H +gR, using R=const.:

fOf+En*(n—1)HR-358;) f?
=H[OH+HROg+gROOH+gR* Jg+3in*(in—1)H*R+n*(n—1)gH*R?
+4n*(n—1)g*HR?>—3H?S, - 6gHRS;—3g*R*S;.

On the other hand, since [] is self-adjoint,

[gROH= [ RHOg.
M M

Thus

[ (HOH+HROg+gROH+gR*(g)= [ (HOH+2RHOg+R%>gg).
M

M
Now, since ¢=0 and R=const., the following expressions hold:

4.3) [Jg=-n(n—1)R—3n*(n—1)RHg+3S,3 g,

(@4 O H=—n|VH|* + [VB|*+(n—1) R B’

—4n?(n—1)H?*R+3HS;.
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For (4.3), see [R, Eq. 13, p. 475], or compute it directly using the techniques
of § 3. (4.4) follows from Lemma 3.7 for ¢ =0. Therefore,

4O )= (1 (VB =n Vi)
M
+ [ {(n—1)RH B>~ 4n*(n—1) H*R+ 3H?S,)
M

+ [ {—2n(n—1) HR*—n*(n—1)H*R*g+6H Rg S}
M

+ j{ n(n—1)R3g+3g?2 RZS3~7(n—1)HR3 2}

M

+ [ {4n*(n—1)H*R+n*(n—1)gH?*R*+4n*(n—1)g? HR?}
M

+ [ {—=3H?S;—-6gHRS;—3g*R*S,}.
M
Fortunately, this expression simplifies into

L) ()= | H( IVB|2—n|H] )

+(n—1)R [ H|B|*~n(n—1)R? [ (H+gR)—n(n—1)R | HR
M M

m

§ H(,, 1VBIZ=nIVHIZ) + - DR [ H(1BI?=nR)
M M

I

[ B, IVBIZ=nIVHI2) (= DR { (2= R)
M M

since | B||? —nR=n?(H?— R). Notice that, since M is compact, R>0 and
O<n(n—1)R=n?H?— | B> <n*H?—nH?=n(n—1) H?;

we conclude that H is nowhere zero. Thus an orientation can be chosen so
that H>0. Notice also that H2—R>0 and the equality holds if and only if
x is umbilic. It follows from Lemma 4.1 that

0= —4J"(0) j{H(—uVBn —n|VH| )+n2(n—1)RH R)} dM 0.

Thus if x is stable, H2— R=0, hence x is umbilic and x(M) is a geodesic sphere.
The converse follows from Proposition 2.6. []

(4.5) Proof of Theorem (1.2) for c>0

Let x: M"—S"*!(c)cR"*? Fix a unit vector veR"*? and define functions f
and g on M by

S)=<NP@),v>, E@)=<{x(p)v), peM.
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We will need the following expressions:

4.6) Of=cnin—1)(R—c)§+3S3f—4n*(n—1)(R—c)H f
4.7) Odg=n(n—1D)(R—¢c)f—nn—1)cHZ.
For (4.6) see [R, Proposition D, p. 473], and for (4.7) see [R, remark to Theorem

E, p. 473]; they can both be computed directly with the techniques of § 3.
To find a convenient test-function, we set

h=R~—-c)f—Hc§.
Notice that, by (4.7), n(n—1) h=[1]§. Since [ is self-adjoint, [ hdM =0.
M

From now on, let us assume ¢=1. Choose v as an element of a canonical
basis ag, ay, ..., @4,+; of R"*? and let f, and &, be the above functions for
v=a,,A=0,1,...,n+1.8Set h,=(R—1)f,—H§,.

Now, assume that x is stable. Then, for each A4, J"(0)(h,) =0, that is,

(48) 2 (h,Ohy+{3n*(n—1)HR—1)+n(n—1) H-3S,} h}) dM <0.

We want to introduce hy=(R—1)f,—Hg, in (4.8) and sum up in 4. We
divide the computation in two parts, and first compute the second term in
the integrand:

(3n*(n—1)H(R—1)—3S5+n(n—1)H} k3
=4 (n—1)HR—-1P fi—n*(n—1) H*(R—1)* f, &,
+in’(n—1)H*(R—1)g5-3(R-1)* S,/
+6(R—1)HSsf,8,—3H?S, 82 +n(n—1)(R—12H £
—2n(n—1)(R—1)H?f, 3 ,+n(n—1) H352.

Now observe that, since x(M) is contained in a unit sphere,

(49) zgizz<x’ aA>2:<x’x>:ls
A A
(4.10) Lfi=YANay’=(NN)=1,
A A
(4.11) Y faga=Y AN as) (X a0 =C(Nx)=0.
A A

It follows that
4.12) Z{%nz(n——l)H(R—1)—3S3+n(n—l)H} h?
A

—4n*(n—1) HR—1)* +3n?(n— 1) H*(R—1)
—3(R—1)*S,—3H2S,+n(n—1)(R—1)*H
+n(n—1) H3.
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We now compute the first term in the integral of (4.8):
Ih Ohy=(R—1)? ffADfA (R—1) ffAD(HgA)
—(R-1) AHgADfAJrg Hg,O0(HZ,)
=(R—1)21£ fADfA_z(R_I)Mj' HEADfﬂ-AJ; HZ,O0(Hg4)
=(R“1)21£ fa{n(n—1D(R—-1)g,+3S3f4—3n*(n— 1) HR—=1)f,}

—2(R-1) [ H{n(n—1)(R—1) g4

+3Ss fu—4n*(n—1) H(R—1)f}
-+ § Hg {HOga+84sOH+2nY (V. gV, H)
M ;

~2¥ hi; (V.80 (V,, H)},

iJ

where we have used the fact that (see §3, Lemma 3.6) for any two functions
f,g: M" >R, we have

O g ng+ng+2nHkagk 2 Z hee fige.

k=1 k=1

Therefore
§ haldhy
M
=n(n-1)(R _1)35ngA_+_3 ij S3

—4n*(n—1)(R—1) ffA H-2n(n—1)(R-17 | g1 H

OQ( g'—a

—6(R—1) IngAH53+n2(n—1) (R—1)* IfA

4 ng{n(n—l)( R—1)H fu—n(n—1) H*g,—ng,|VH|?

M

1
+ g4IVB|>+(n—1)(R—1)§,B|*

1 - ~ ~
-5 n*(n—1) H*(R—1)§4+3HEg4 S3+1B|* &4

—nH?*§ +2nHZV g4 (V. H)

=23 (Ve 84 (Y, H)}.

iJ
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We sum up the above expression in A, use (4.9), (4.10), (4.11) and the fact
that

0 = Ve,(zgi) = 2Z§A Ve.' gA
A A
to obtain finally

(4.13) Y [ hyClh,
A M

=3(R—1)* | S3—4n2(n—1)(R—1)* [ H

—2n(n—1)(R—1? | H—n(n—1) | H3
M M

—n | H|lVH[|2+% { H|VBJ?
M M
+(n—1)(R—1) { H|B|*—4n*(n—1)(R—1) | H?
M

M
+3 { H*S;+ { H|B||*>—n | H>.
M M M

Now, using (4.12) and (4.13) we obtain that the sum of (4.8) in 4 can be
written as

—2.J"(0)(hy)
A
= {%nz(n—1)H(R—1)3+%n2(n—1)H3(R—1)—3(R—1)2S3

—3H2S;4+n(n—1)(R—12H+n(n—1) H3+3(R—1)% S,
—1n*(n—1)(R—1* H—2n(n—1)(R—1)*H—n(n—1) H

—nH HVHHZWL%HVBII""H'I—1)(R—I)HHBII2

—in*(n—1)(R—1)H*+3H?S5;,+H |]B|y2_nH3}§0
which simplifies into

@14 ~X I O0)= [ {1 1VBIP-nvHI?|

+[—n(n——1)(R—-1)2H+(n—1) (R——l)HHBHZ]
+H(an2—nH)}§o.

We observe now that, since [B||?=n’H?>—n(n—1)(R—1), we have (n
~1)(R=1)H|B|*~n(n—1)(R—12H=n?(n—1)(R—1) H(H*—(R—1)). Fur-
thermore,

n(n—1)(R—1)=n’H?—||B|*<n(n—1) H?;
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thus, since R—1>0 by hypothesis, H? never vanishes, and we can choose an
orientation so that H>0.
It follows that if M is stable,

02 =30 O k= § 411|198 n 19|

A

+n*(n—1)H(R—1)[H?>—(R— 1)]+H[|;B||2-nH2]}go.

Therefore, |Bj?=nH? and M is umbilic as we wished. The converse follows
from Proposition 2.6. ]
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