Hypersurfaces of constant mean curvature with finite index and volume of polynomial growth

By

H. ALENCAR and M. DO CARMO

1. Introduction.

(1.1) Let $x: M^n \to \overline{M}^{n+1}$ be an isometric immersion of a complete, noncompact, Riemannian *n*-manifold M^n into an oriented, complete, Riemannian (n + 1)-manifold. Let $p \in M$ and denote by $B_r(p) \subset M$ the geodesic ball of center p and radius r. We say that the volume of M has polynomial growth if there exist positive numbers α and c such that $\operatorname{vol}(B_r(p)) \leq cr^{\alpha}$. We want to prove the following result.

(1.2) Theorem. Let M^n and \overline{M}^{n+1} be as above and let $x: M^n \to \overline{M}^{n+1}$ have constant mean curvature H. Assume that the volume of M has polynomial growth and that ind $M < \infty$. Then, there exists a constant $r_0 > 0$ such that

$$H^2 \leq - \inf_{M-B(r_0)} \overline{\operatorname{Ric}}(N).$$

Here N is a smooth unit normal field along M, $\overline{\text{Ric}}(N)$ is the value of the Ricci curvature of \overline{M}^{n+1} in the vector N, and ind M is defined as follows. Let L be the second-order differential operator on M given by

$$L = \varDelta + ||B||^2 + \operatorname{Ric}(N),$$

where Δ is the Laplacian on M and $||B||^2$ is the second fundamental form of x. Associated to L is the quadratic form

$$I(f) = -\int_{M} f L f \, dM \, ,$$

defined on the vector space of functions f on M that have support on a compact domain $K \subset M$. For each such K, define the index $\operatorname{ind}_L K$ of L in K as the maximal dimension of a subspace where I is negative definite. The index $\operatorname{ind} M$ of L in M (or simply, the index of M) is then defined by

$$\operatorname{ind} M = \sup_{K \in M} \operatorname{ind}_L K,$$

where the supremum is taken over all compact domains $K \subset M$.

One may also consider the index of the quadratic form I restricted to the subspace made up by those f's that satisfy the condition $\int_{M} f dM = 0$; this will be denoted by Ind₀ M. However, it is easily checked that Ind $M < \infty \Leftrightarrow \text{Ind}_{0} M < \infty$, so in the statement of Theorem (1.2) it is immaterial whether one takes Ind M or Ind₀ M.

Theorem (1.2) has many interesting consequences. The Corollary below shows that if the Ricci curvature of M^{n+1} is nonnegative, any complete noncompact hypersurface of constant mean curvature with finite index and volume of polynomial growth is minimal.

(1.3) Corollary. Let $x: M^n \to \overline{M}^{n+1}$ be as in Theorem (1.2). Assume, in addition, that $\overline{\text{Ric}} \ge 0$. Then $H \equiv 0$.

Proof. Since $\inf_{M^{-B}(r_0)} \overline{\operatorname{Ric}}(N) = \beta \ge 0$, we obtain from Theorem (1.2) that $H^2 \le -\beta$. Thus, $\beta = 0$ and $H \equiv 0$.

Corollary (1.3) should be compared with a similar recent result of Cheung [1]. His proof is entirely different from ours and he needs the following additional hypothesis to obtain the same result: a) x is proper; b) \overline{M}^{n+1} has bounded geometry, in the sense that the sectional curvature is bounded from above and the injectivity radius is bounded from below; c) the growth condition for the volume takes the (slightly stronger) form

 $\sup_{r}\frac{\operatorname{vol}\left(B_{p}(r)\right)}{r^{n}}<\infty.$

(1.4) R e m a r k. In the case $\overline{M}^{n+1} = R^{n+1}$, Corollary (1.3) generalizes a theorem of Chern [2] that complete graphs M in R^{n+1} with constant mean curvature are minimal. This follows from the facts that such graphs are strongly stable (i.e., ind M = 0) and the volume of M grows polynomially. This also shows that the finiteness of the index and the polynomial growth of vol(M) are sufficient for the conclusion of Chern's theorem.

(1.5) Corollary. Let $x: M^n \to \overline{M}^{n+1}$ be as in Theorem (1.2). Assume in addition that $\operatorname{Ric} \leq 0$ and that $\inf_{\overline{M}} \operatorname{Ric} = -\delta, \delta > 0$. Then $H^2 \leq \delta$; in particular, if \overline{M}^{n+1} is the hyperbolic space $H^{n+1}(-1)$ with constant sectional curvature -1, then $H^2 \leq 1$.

(1.6) R e m a r k. The condition that ind $M < \infty$ is certainly necessary for Theorem (1.2) as shown by the examples of the embedded Delaunay surfaces in R^3 : they have infinite index and their volumes grow linearly.

2. Proof of Theorem (1.2).

(2.1) Fix a point $p \in M$ and denote by B(r) the geodesic ball in M of center p and radius r. Let $r_0 > 0$ be a constant and denote by $A(r_0, r) = B(r) - B(r_0)$. We recall that the first eigenvalue $\lambda_1(A(r_0, r))$ is defined as the smallest λ that satisfies

(2.2)
$$\Delta g + \lambda (A(r_0, r))g = 0,$$

490

for some nonzero function g on M with $g(\partial A) = 0$. The first eigenvalue of $M - B(r_0)$ will be defined by

$$\lambda_1 (M - B(r_0)) = \inf_{r > r_0} \lambda_1 (A(r_0, r)).$$

The following lemma is essentially due to Cheng and Yau ([3], Corollary 1, p. 345).

(2.3) Lemma. Let u be a positive smooth function defined on a Riemannian manifold M, and let $r_0 > 0$ be a constant. Then

$$\lambda_1(M - B(r_0)) \ge \inf_{M - B(r_0)} \left(-\frac{\Delta u}{u}\right).$$

Proof. From [3], Theorem 4, we have that

$$\inf_{x\in A(r_0,r)}\left\{\frac{\Delta g}{g}-\frac{\Delta u}{u}\right\}<0\,,$$

where $g \ge 0$ is a smooth function on $A = A(r_0, r)$ with $(g(\partial A) = 0$ that satisfies (2.2) for $\lambda = \lambda_1$. Therefore,

$$\inf_{x\in A(r_0,r)}\left\{-\lambda_1(A(r_0,r))-\frac{\Delta u}{u}\right\}<0.$$

Thus

$$\lambda_1(A(r_0, r)) > \inf_{x \in A(r_0, r)} \left(-\frac{\Delta u}{u} \right)$$

and, by taking the infimum for $r > r_0$, the lemma follows.

(2.4) Lemma. Assume that the volume of a Riemannian manifold M has polynomial growth, and let $r_0 > 0$ be a constant. Then

$$\lambda_1(M-B(r_0))=0.$$

Proof. Let r be the distance function from the point $p \in M$. Fix a number $r_1 > r_0$, and define a radial function $f: B(r_1) \to \mathbb{R}$ by

$$f(r) = \begin{cases} = 0, & 0 \leq r \leq r_0 \\ = r - r_0, & r_0 \leq r \leq r_0 + \frac{1}{8}r_1 \\ = \frac{1}{8}r_1, & r_0 + \frac{1}{8}r_1 \leq r \leq \frac{7}{8}r_1 \\ = r_1 - r, & \frac{7}{8}r_1 \leq r \leq r_1. \end{cases}$$

It is well-known that

$$\lambda_1(A(r_0, r_1)) \leq \frac{\int_{A(r_0, r_1)} |\nabla f|^2 \, dM}{\int_{A(r_0, r_1)} f^2 \, dM}$$

By using the special form of f, we easily see that

(2.5)
$$\frac{1}{64}r_1^2\lambda_1(A(r_0,r_1)) \leq \frac{V(A(r_0,r_1))}{V(A(r_0+\frac{1}{8}r_1,\frac{7}{8}r_1))} = \frac{V(B(r_1)) - V(B(r_0))}{V(B(\frac{7}{8}r_1)) - V(B(r_0+\frac{1}{8}r_1))},$$

where by $V(\cdot)$ we mean the volume of the enclosed set.

Now, observe that if r < s then $\lambda_1(A(r_0, r)) > \lambda_1(A(r_0, s))$. Thus, for all sequences $\{r_i\}, r_i < r_{i+1}, r_i \to \infty$,

$$\lim_{r_i} \lambda_1(A(r_0, r_i))$$

exists. So, by (2.5), if we prove that for some sequence $\{r_i\}, r_i \to \infty$, the expression

(2.6)
$$\frac{V(B(r_i)) - V(B(r_0))}{V(B(\frac{7}{8}r_i)) - V(B(r_0 + \frac{1}{8}r_i))}, \quad r_i \to \infty,$$

is bounded, then $\lim \lambda_1(A(r_0, r_i)) = 0$ for this sequence, hence for all others. Therefore $\lambda_1(M - B(r_0)) = 0$ and this will prove the Lemma.

To prove this, we use the fact the volume of M has polynomial growth, i.e., there exist positive numbers c and α such that $V(B(r)) \leq cr^{\alpha}$. Therefore $V(B(r))/r^{\alpha} \leq c$, and we can choose a sequence $\{r_i\}, r_i \to \infty$, such that

$$\lim_{r_i}\frac{V(B(r_i))}{r_i^{\alpha}}=c.$$

Consider this sequence $\{r_i\}$, and notice that

$$\lim_{r_i}\frac{V(B(kr_i))}{r_i^{\alpha}}=k^{\alpha}c, \quad k>0.$$

Therefore,

$$\lim_{r_i \to \infty} \frac{V(B(r_i))}{r_i^{\alpha}} = c, \quad \lim_{r_i \to \infty} \frac{V(B(r_0))}{r_i^{\alpha}} = 0,$$
$$\lim_{r_i \to \infty} \frac{V(B(\frac{7}{8}r_i))}{r_i^{\alpha}} = \left(\frac{7}{8}\right)^{\alpha} c.$$

Observe now that if we choose r_i so that $r_0 < (\frac{3}{4} - \varepsilon)r_1$, for some $\varepsilon > 0$, we obtain that

$$r_0 + \frac{1}{8}r_i < (\frac{7}{8} - \varepsilon) r_i, \quad i = 1, \dots,$$

which implies that

$$V(B(r_0 + \frac{1}{8}r_i)) < V(B((\frac{7}{8} - \varepsilon)r_i)),$$

hence

$$\frac{V(B(r_0+\frac{1}{8}r_i))}{r_i^{\alpha}} \leq \lim_{r_i \to \infty} \frac{V(B((\frac{7}{8}-\varepsilon)r_i))}{r_i^{\alpha}} = \left(\frac{7}{8}-\varepsilon\right)^{\alpha} c.$$

Therefore, there exists a subsequence of $\{r_i\}$, to be denoted again by $\{r_i\}$, such that

$$\lim_{r_i\to\infty}\frac{V(B(r_0+\frac{1}{8}r_i))}{r_i^{\alpha}}\leq \left(\frac{7}{8}-\varepsilon\right)^{\alpha}c.$$

It follows that, for this subsequence, the limit of (2.6) exists and is finite. This proves our claim and the Lemma.

(2.6) Proof of Theorem 1.2. In [4], Proposition 1, Fischer-Colbrie proved that if ind $M < \infty$, there exist a compact set K and a positive function u on M such that on M - K, u satisfies

$$O = Lu = \Delta u + ||B||^2 u + n \operatorname{Ric}(N) u.$$

Let $p \in M$ and let $r_0 > 0$ be such that $K \subset B(r_0)$. By Lemma (2.4), $\lambda_1(M - B(r_0)) = 0$, and by Lemma (2.3),

$$0 = \lambda_1 (M - B(r_0)) \ge \inf_{M - B(r_0)} \left(-\frac{\Delta u}{u} \right) = \inf_{M - B(r_0)} \left\{ \|B\|^2 + n \operatorname{\overline{Ric}}(N) \right\}$$
$$\ge \inf_{M - B(r_0)} n (H^2 + \operatorname{\overline{Ric}}(N)),$$

since $||B||^2 \ge nH^2$. Because H = const., the theorem follows.

(2.7) R e m a r k. As it can be seen from the proof, we have proved the following intrinsic result. Let M be a complete, noncompact Riemannian manifold and let $L = \Delta + q$ be an operator on M, where q is a smooth function on M. Assume that the index of L is finite and that the volume of M has polynomial growth. Then there exists $r_0 > 0$ such that $\inf_{M-B(r_0)} q \leq 0$.

References

- L. F. CHEUNG, A non-existence theorem for stable constant mean curvature hypersurfaces. Manuscripta Math. 70, 219-226 (1991).
- [2] S. S. CHERN, On the curvatures of a piece of hypersurface in Euclidean space. Abh. Math. Sem. Univ. Hamburg 29, 77-91 (1965).
- [3] S. Y. CHENG and S. T. YAU, Differential equations on Riemannian manifolds and their geometric applications. Comm. Pure Appl. Math. 28, 333-354 (1975).
- [4] D. FISCHER-COLBRIE, On complete minimal surfaces with finite Morse index in three-manifolds. Invent. Math. 82, 121-132 (1985).

H. Alencar Universidade Fed. de Alagoas Departamento de Matemática 57000-Maceió, AL Brasil M. do Carmo Inst. de Matemática Pura e Aplicada (IMPA) Estrada D. Castorina, 110 – Jd. Botânico 22460-Rio de Janeiro R. J. Brasil