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1. Introduction.

(1.1) Let x: M" » M""! be an isometric immersion of a complete, noncompact,
Riemannian n-manifold M" into an oriented, complete, Riemannian (n + 1)-manifold.
Let pe M and denote by B,(p) = M the geodesic ball of center p and radius r. We say
that the volume of M has polynomial growth if there exist positive numbers ¢ and ¢ such
that vol(B,(p)) < cr®. We want to prove the following result.

(1.2) Theorem. Let M" and M"** be as above and let x: M" — M"™! have constant
mean curvature H. Assume that the volume of M has polynomial growth and that
ind M < 0. Then, there exists a constant roq > 0 such that

H?*< — inf Ric(N).
M~B(ro)

Here N is a smooth unit normal field along M, Ric(N) is the value of the Ricci
curvature of M"*? in the vector N, and ind M is defined as follows. Let L be the
second-order differential operator on M given by

L =4+ |B|?+ Ric(N),

where 4 is the Laplacian on M and || B|| * is the second fundamental form of x. Associated
to L is the quadratic form

I(f)=—AJ;fodM,

defined on the vector space of functions f on M that have support on a compact domain
K = M. For each such K, define the index ind; K of L in K as the maximal dimension
of a subspace where [ is negative definite. The index ind M of Lin M (or simply, the index
of M) is then defined by

ind M = sup ind, K,

KoM

where the supremum is taken over all compact domains K < M.
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One may also consider the index of the quadratic form I restricted to the subspace
made up by those f's that satisfy the condition | fdM = 0; this will be denoted by
M

Ind, M. However, it is easily checked that Ind M < oo <> Indy M < o0, s0 in the state-
ment of Theorem (1.2) it is immaterial whether one takes Ind M or Ind, M.

Theorem (1.2) has many interesting consequences. The Corollary below shows that
if the Ricci curvature of M"*! is nonnegative, any complete noncompact hypersurface
of constant mean curvature with finite index and volume of polynomial growth is mini-
mal.

_(1.3) Corollary. Let x: M" — M"** be as in Theorem (1.2). Assume, in addition, that
Ric > 0. Then H = 0.

Proof. Since inf Ric(N)= f = 0, we obtain from Theorem (1.2) that H> £ — §.
M~-B(ro)

Thus, f=0and H=0.

Corollary (1.3) should be compared with a similar recent result of Cheung [1]. His
proof is entirely different from ours and he needs the following additional hypothesis
to obtain the same result: a) x is proper; b) M"*! has bounded geometry, in the sense
that the sectional curvature is bounded from above and the injectivity radius is bounded
from below; ¢) the growth condition for the volume takes the (slightly stronger) form

1(B
sup "B
r r

(1.4) Remark. In the case M*** = R""% Corollary (1.3) generalizes a theorem of
Chern [2] that complete graphs M in R"*! with constant mean curvature are minimal.
This follows from the facts that such graphs are strongly stable (i.e., ind M = 0) and the
volume of M grows polynomially. This also shows that the finiteness of the index and the
polynomial growth of vol(M) are sufficient for the conclusion of Chern’s theorem.

(1.5) Corollary. Let x: M" — M"** be as in Theorem (1.2). Assume in addition that
Ric £ 0 and that inf Ric = — 8, 8 > 0. Then H? < §; in particular, if M™** is the hyperbol-
M

ic space H™**(— 1) with constant sectional curvature — 1, then H*> < 1.

(1.6) Remark. The condition that ind M < oo is certainly necessary for Theo-
rem (1.2) as shown by the examples of the embedded Delaunay surfaces in R3: they have
infinite index and their volumes grow linearly.

2. Proof of Theorem (1.2).

(2.1) Fix a point p € M and denote by B(r) the geodesic ball in M of center p and radius
r. Let ry > 0 be a constant and denote by A{(rg, r) = B(r) — B(r,). We recall that the first
eigenvalue 4, (4 (rg, r)) is defined as the smallest A that satisfies

(2.2) Ag + AMA(ry,1))g =0,



Hypersurfaces of constant mean curvature 491

for some nonzero function g on M with g(¢4) = 0. The first eigenvalue of M — B(r,) will
be defined by

A (M — Blrg)) = inf A, (A(rg, 7).

r>rg

The following lemma is essentially due to Cheng and Yau ([3], Corollary 1, p. 345).

(2.3) Lemma. Let u be a positive smooth function defined on a Riemannian manifold M,
and let vy > O be a constant. Then

Au

A, (M —B(ro) = inf (- M).

M= B(ro) u

Proof. From {3], Theorem 4, we have that

A Au
inf Jﬁq - —} <0,
xeAlrg,r) g U

where g 2 0 is a smooth function on 4 = A(r,, ) with (g(04) = 0 that satisfies (2.2) for
A = 4,. Therefore,

inf {— A (A(ro, 7)) — f:-;} <0.

xedlvg,7)

Thus

A (A, ) > inf (—fjﬁ>

xed(rg,r) u
and, by taking the infimuom for r > r,, the lemma follows.
(2.4) Lemma. Assume that the volume of a Riemannian manifold M has polynomial
growth, and let v, > 0 be a constant. Then
41 (M — B(ro)) = 0.

Proof. Let r be the distance function from the point p e M. Fix a number 7, > r,,
and define a radial function f: B(r;) - R by

=0, 0Zr=Zr,

I =1 —Trg, rogrgro—i—%rl

T) =
=1 1 7
=3t Fo+5t ST Sgh
=r, —7, IrySrsry.
It is well-known that
[ vfi*aMm

71 (Ao, 7)) S 5002

f2dM

Alrg.ry)
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By using the special form of f, we easily see that

V(Alre,r)) _  VB(ry)) — V(B(ro)
V(A(ro‘*'é‘rpg‘ﬁ)) V(B(%rl))‘ V(B("o“"‘é‘rl)),

1
2.5) ar% Ay(Afro, 7)) S

where by V() we mean the volume of the enclosed set.
Now, observe that if r < s then A, (A(rg. 1) > 21 (A (rg, 8)). Thus, for all sequences

{ri}, 1 <rigq, 1= 0,

lim A, (4 (ro, 1)

exists. So, by (2.5), if we prove that for some sequence {r;}, r; — o0, the expression

V(B(r) — V(B(ro)

GO VB - VBt i) "

— 0,

is bounded, then lim 4, (4 (ry, r;)) = 0 for this sequence, hence for all others. Thersfore
A (M — B(ry) = 0 and this will prove the Lemma.

To prove this, we use the fact the volume of M has polynomial growth, i.e., there exist
positive numbers ¢ and o such that V(B(r)) £ cr® Therefore V(B {r))/r* < ¢, and we can
choose a sequence {r;}, r; — oo, such that
li V(B(r;)

im ~

¥; r;

Consider this sequence {r;}, and notice that

V(B (kr;
limﬁ(—éi)‘) =k*c, k>0.
¥ ri
Therefore,

V(B(r,) V(B
lim { a(rl})z ¢, 1lim ( 5"0))_:0’
[k Fi r;= F;
. V(BGn) (7>"
Im ———~=={-] c.
v, o 7'? 8

Observe now that if we choose r; so that ry < (-‘3; — g}r,, for some ¢ > 0, we obtain that
rotsn<@G—or, i=1,..,
which implies that
V(B(ro + §r:) < V(B(G ~ &)T:)),
hence

V(B(ro +3rs)

e 4
i

< lim %ﬂ=(%—s)ac.

ri— o ri
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Therefore, there exists a subsequence of {r;}, to be denoted again by {r;}, such that

1. o

P o r

It follows that, for this subsequence, the limit of (2.6) exists and is finite. This proves
our claim and the Lemma.

(2.6) Proofof Theorem 1.2. In [4], Proposition 1, Fischer-Colbrie proved that
if ind M < oo, there exist a compact set K and a positive function u on M such that on
M - K, u satisfies

O=Lu=Au+ |B|*u+nRic(N)u.

Let pe M and let r, > 0 be such that K < B(r,). By Lemma (2.4), 1, (M — B(ry)) = 0,
and by Lemma (2.3),

0=2, (M~ B(rg) = inf <—@)= inf {|B]?+ nRic(N)}

T M-B@y u M—=B(ro)

> inf n(H? 4 Ric(N)),

T M-B(rg)
since || B||* = nH?2 Because H = const., the theorem follows.

(2.7) Remark. As it can be seen from the proof, we have proved the following
intrinsic result. Let M be a complete, noncompact Riemannian manifold and let
L = 4 + q be an operator on M, where g is a smooth function on M. Assume that the
index of L is finite and that the volume of M has polynomial growth. Then there exists
ro > O such that inf ¢ <0.

M=B(ry)
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