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1. Introduction.  

(1.I) Let x: M" ~ M"+I be an isometric immersion of a complete, noncompact, 
Riemannian n-manifold M" into an oriented, complete, Riemannian (n + 1)-manifold. 
Let p e M and denote by B,(p)  c M the geodesic ball of center p and radius r. We say 
that the volume of M has polynomial growth if there exist positive numbers c~ and c such 
that vot (B r (p)) < cr% We want to prove the following result. 

(1.2) Theorem. Let  M"  and ~ , + 1  be as above and let x:  M n ~ ~I  "+1 have constant 
mean curvature H. Assume that the volume o f  M has polynomial growth and that 
ind M < co. Then, there exists a constant r o > 0 such that 

H 2 ~< - inf Ric(N). 
M - B ( to)  

Here N is a smooth unit normal field along M, Ric (N) is the value of the Ricci 
curvature of M"+ I in the vector N, and ind M is defined as follows. Let L be the 
second-order differential operator on M given by 

L = A + [IB II 2 + Ric (N), 

where A is the Laplacian on M and II B fl 2 is the second fundamental form ofx. Associated 
to L is the quadratic form 

I ( f )  = - I f L f d M ,  
M 

defined on the vector space of functions f on M that have support on a compact domain 
K c M. For each such K, define the index ind L K of L in K as the mafimal dimension 
of a subspace where I is negative definite. The index ind M of L in M (or simply, the index 
of M) is then defined by 

ind M = sup ind L K ,  
K ~ M  

where the supremum is taken over all compact domains K c M. 
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One may also consider the index of the quadratic form I restricted to the subspace 
made up by those f ' s  that satisfy the condition ~ f d M  = 0; this will be denoted by 

M 

Indo M. However, it is easily checked that I n d M  < oo ~ I n d o M  < o% so in the state- 
ment of Theorem (1.2) it is immaterial whether one takes Ind M or Indo M. 

Theorem (1.2) has many_ interesting consequences. The Corollary below shows that 
if the Ricci curvature of M "+ 1 is nonnegative, any complete noncompact  hypersurface 
of constant mean curvature with finite index and volume of polynomial growth is mini- 
mal. 

(1.3) Corollary. Le t  x :  M "  ~ ~ , + 1  be as in Theorem (1.2). Assume, in addition, that 
Ric > 0. Then H - O. 

P r o o f .  Since inf R i c ( N ) = f l > 0 ,  we obtain from Theorem (1.2) that H 2 < - ~q. 
M - B ( t o )  

Thus, fi = 0 and H =- 0. 
Corollary (1.3) should be compared with a similar recent result of Cheung [1]. His 

proof is entirely different from ours and he needs the following additional hypothesis 
to obtain the same result: a) x is proper; b) ~ r"+ 1 has bounded geometry, in the sense 
that the sectional curvature is bounded from above and the injectivity radius is bounded 
from below; c) the growth condition for the volume takes the (slightly stronger) form 

vol(Bv(r))  
sup - -  < oo. 

r r n  

(1.4) R e m a r k. In the case M"+ 1 _- R,+ 1, Corollary (1.3) generalizes a theorem of 
Chern [2] that complete graphs M in R "+ 1 with constant mean curvature are minimal: 
This follows from the facts that such graphs are strongly stable (i.e., ind M = 0)and  the 
volume of M grows polynomially. This also shows that the finiteness of the index and the 
polynomial growth of vol (M) are sufficient for the conclusion of Chern's theorem. 

(1.5) Corollary. Let  x :  M " - ~  ~ , + 1  be as in Theorem (i.2). Assume in addition that 

Ric =< 0 and that inf Ric = - 6, 6 > 0. Then H 2 <__ 6; in particular, i f  IVI "+ 1 is the hyperbol- 

ic space H n+l ( -  1) with constant sectional curvature , 1, then H 2 <__ 1. 

(1.6) R e m a r k .  The condition that i n d M  < oo is certainly necessary for Theo- 
rem (1.2) as shown by the examples of the embedded Delaunay surfaces in R 3: they have 
infinite index and their volumes grow linearly. 

2. Proof of Theorem (1.2). 

(2.1) Fix a point p ~ M and denote by B (r) the geodesic ball in M of center p and radius 
r. Let r o > 0 be a constant and denote by A (r o, r) = B (r) - B (ro). We recall that the first 
eigenvalue 21 (A(ro,  r)) is defined as the smallest 2 that satisfies 

(2.2) A g + 2 (A (ro, r))g = 0, 
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for some nonzero function g on M with g (OA) = 0. The first eigenvalue of M - B (r0) will 
be defined by 

21 (M - B(ro)) = inf 21 (A(r o, r)). 
r > r  o 

The following lemma is essentially due to Cheng and Yau ([3], Corollary 1, p. 345). 

(2.3) Lemma. Let u be a positive smooth function defined on a Riemannian manifold M, 
and let r o > 0 be a constant. Then 

21(M - B(r~ >= M-m,o)inf \ ( - ~ ) "  

P r o o f. From [3], Theorem 4, we have that 

inf { ; g  ~ U } < o ,  
xEA(ro,r)  

where g >= 0 is a smooth function on A = A (r o, r) with (9 (~A) = 0 that satisfies (2.2) for 
2 = 21. Therefore, 

inf { -21(A(ro ,  r))-A~-f}<O. 
xeA(% ,r) 

Thus 

21(A(ro, r)) > inf ( - - ~ )  
xeA(ro,r) 

and, by taking the infimum for r > r o, the lemma follows. 

(2.4) Lemma. Assume that the volume of a Riemannian manifold M has polynomial 
growth, and let r o > 0 be a constant. Then 

2 i ( M -  B(ro) ) = O. 

P r o o f. Let r be the distance function from the point p e M. Fix a number h > ro, 
and define a radial function f :  B(q)  -~ R by 

= 0 ,  O<-r~_ro 

~ r - - r o ,  r o < r < r o - {  - I =  = g r l  

f (r) = = 1 1 ~ r < 7 g h ,  r o + ~r~ _ = ~r 1 
7 < < 

=- K 1 -- r, ~r I = r = r I . 

It is well-known that 

f [Vfl 2dM 
21 (A(ro,  h ) )  < A( . . . . .  ) 

f 2 d M  
A(ro,r 1) 
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By using the special form of f ,  we easily see that  

(2.5) 
1 z V(A(ro ,  rl) ) V(B(r l ) )  -- V(B(ro}) 

~-4r~ 2~ (A(r o, q) )  <= V(A(ro  + ~ r l ,  7/.1)) --  V(B(}r~))  - V ( B ( r  o + ~ q ) ) '  

where by V( . )  we mean the volume of the enclosed set. 
Now, observe that if r < s then 21 (A(ro, r ) )> 21 (A (ro, s)). Thus, for all sequences 

{rl} , r i < ri+ l , r i ~ oo, 

lira 2a (A (r o, r~)) 
ri 

exists. So, by (25), if we prove that for some sequence {ri}, ri ~ oo, the expression 

V(B  (ri)) - V ( B  (ro)) 
(2.6) V(B(~ri))  - V(B(ro + ~r,))' rl ~ oo, 

is bounded,  then lim 21 (A (to, rl)) -- 0 for this sequence, hence for all others. Therefore 
21 (M - B (ro)) = 0 and this will prove the Lemma. 

To prove this, we use the fact the volume of M has polynomial  growth, i:e., there exist 
positive numbers c and a such that  V(B(r))  <= crL Therefore V(B(r))/r  ~ < c, and we can 
choose a sequence {r~}, rl ~ ~ ,  such that 

V(B(~)) 
lira - c. 

r~ r~ 

Consider  this sequence {r~}, and notice that  

V (B (k r i)) 
lim - U c ,  k > 0 .  

ri r i 

Therefore, 

V (B (ri)) V (B (ro)) 
lira - c, lim = O, 

r i -~ co Y i  r l  -*  ~ r l  

r i ~ c~ r ~  

Observe now that  if we choose r i so that r o < (~ " e)rl,  for some e > 0, we obtain that 

1 7 r o + ~ r  i < ( ~ - 8 )  r i, i = l  . . . . .  

which implies that  

V(B( r  o + ~rl) ) < V(B((~ , e)r,)), 

hence 

V(B(r~  + ~ri)) <= lira 
r :  t r i ~ oo 

V ( B ( ( } -  ~)r,))= _ ~ .  

r f  
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Therefore, there exists a subsequence of {r~}, to be denoted again by {r~}, such that  

lim V(B(r~ + ~ri)) < _ c. 

It  follows that, for this subsequence, the limit of (2.6) exists and is finite. This proves 
our claim and the Lemma. 

(2.6) P r o o f o f T h e o r e m 1.2. In [4], Propos i t ion  1, Fischer-Colbrie  proved that  
if ind M < oe, there exist a compact  set K and a positive function u on M such that  on 
M - K, u satisfies 

0 = Lu = Au + ]]BllZu + n R i c ( N ) u .  

Let p e M and let r 0 > 0 be such that  K c B(ro). By Lemma (2.4), 21 (M - B(ro) ) = 0, 
and by Lemma (2.3), 

O = 2 1 ( M - B ( r o ) ) > - _  inf ( A u ~ =  inf {]IB[12+nRic(N)}  
M-B(ro) \ b i l l  M-B(ro) 

> inf n(H 2 + Ric(N)) ,  
M -- B (r O) 

since [[ B ][ 2 > n H  2. Because H = const., the theorem follows. 

(2.7) R e m a r k .  As it can be seen from the proof, we have proved the following 
intrinsic result. Let M be a complete, noncompact  Riemannian manifold and let 
L = A + q be an opera tor  on M, where q is a smooth function on M. Assume that  the 
index of L is finite and  that  the volume of M has polynomial  growth. Then there exists 
r o > 0 s u c h t h a t  inf q < 0 .  

M - B (r o) 
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